PROFESSOR MICHAEL ZITZMANN (Orcid ID: 0000-0003-3629-7160) MS LISE AKSGLAEDE (Orcid ID: 0000-0001-7885-7467) DR ANDREA M. ISIDORI (Orcid ID: 0000-0002-9037-5417) PROFESSOR FRANK TÜTTELMANN (Orcid ID: 0000-0003-2745-9965) ALBERTO FERLIN (Orcid ID: 0000-0001-5817-8141) Article type : Review Article European Acedemy of Andrology (EAA) GUIDELINES ON KLINEFELTER SYNDROME **Endorsing Organisation: European Society of Endocrinology** Michael Zitzmann¹, Lise Aksglaede² Giovanni Corona³ Andrea M. Isidori⁴ Anders Juul² Guy T'Sjoen⁵ Sabine Kliesch¹ Kathleen D'Hauwers⁶ Jorma Toppari⁷ Jolanta Słowikowska-Hilczer⁸ Frank Tüttelmann⁹ Alberto Ferlin¹⁰ This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> 10.1111/ANDR.12909 This article is protected by copyright. All rights reserved **Affiliations** 3. 5. 6. 8. 9. 10. - University Hospital of Münster, Center for Reproductive Medicine and Andrology / Clinical and Surgical Andrology, Münster, Germany - University of Copenhagen, Rigshospitalet, Department of Growth and Reproduction, Copenhagen, Denmark - 3. Maggiore Bellaria Hospital, Medical Department, Endocrinology Unit, Azienda Usl, Bologna, Italy - 4. Sapienza University of Rome, Policlinico Umberto I Hospital Department of Experimental Medicine, Advanced Endocrine Diagnostics Unit, Rome, Italy - Ghent University and Ghent University Hospital, Department of Endocrinology and Center for Sexology and Gender, Ghent, Belgium - 6. Radboud University Medical Centre Nijmegen, Department of Urology, Nijmegen, The Netherlands - University of Turku, Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology and Centre for Population Health Research,, and Department of Pediatrics, University Hospital, Turku, Finland - Medical University of Lodz, Department of Andrology and Reproductive Endocrinology, Lodz, Poland - 9. University of Münster, Institute of Human Genetics, Münster, Germany - 10. University of Brescia and ASST Spedali Civili Brescia, Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, Brescia, Italy # Correspondence: Prof Dr med Michael Zitzmann, FRSM, MD, PhD **University Clinics Muenster** Center for Reproductive Medicine and Andrology / Clinical and Operative Andrology Domagkstrasse 11 D-48149 Muenster, Germany ichael.Zitzmann@ukmuenster.de Prof Alberto Ferlin, MD, PhD University of Brescia Department of Clinical and Experimental Sciences Unit of Endocrinology and Metabolism Viale Europa 11 25123 Brescia, Italy lberto.ferlin@unibs.it #### **Abstract** **Background:** Knowledge about Klinefelter Syndrome (KS) has increased substantially since its first description almost 80 years ago. A variety of treatment options concerning the spectrum of symptoms associated with KS exists, also regarding aspects beyond testicular dysfunction. Nevertheless, the diagnostic rate is still low in relation to prevalence and no international guidelines are available for KS. Objective: To create the first European Academy of Andrology (EAA) guidelines on KS. **Methods:** An expert group of academicians appointed by the EAA generated a consensus guideline according to the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) system. Results: Clinical features are highly variable among patients with KS, although common characteristics are severely attenuated spermatogenesis and Leydig cell impairment, resulting in azoospermia and hypergonadotropic hypogonadism. In addition, various manifestations of neurocognitive and psycho-social phenotypes have been described as well as an increased prevalence of adverse cardiovascular, metabolic and bone-related conditions which might explain the increased morbidity/mortality in KS. Moreover, compared to the general male population, a higher prevalence of dental, coagulation and autoimmune disorders is likely to exist in patients with KS. Both genetic and epigenetic effects due to the supernumerary X- chromosome as well as testosterone deficiency contribute to this pathological pattern. The majority of patients with KS is diagnosed during adulthood, but symptoms can already become obvious during infancy, childhood or adolescence. The paediatric and juvenile patients with KS require specific attention regarding their development and fertility. **Conclusion:** These guidelines provide recommendations and suggestions to care for patients with KS in various developmental stages ranging from childhood and adolescence to adulthood. This advice is based on recent research data and respective evaluations as well as validations performed by a group of experts. # **List of Recommendations and Suggestions** # **GENETIC ISSUES** - 1. We recommend that a prenatal diagnosis of KS is confirmed on a chromosome analysis on peripheral blood postnatally $(1, \oplus \oplus \oplus \bigcirc)$. - 2. We recommend conventional karyotyping on peripheral blood cells for diagnosis of KS $(1, \oplus \oplus \oplus \bigcirc)$. - 3. We recommend that patients with KS and/or their parents are offered genetic counselling; prenatal counselling should be non-directive $(1, \oplus \oplus \oplus \bigcirc)$. - 4. We recommend karyotype analysis for detecting KS in men with non-obstructive azoospermia and (severe) oligozoospermia (total sperm count < 10×10^6 /ejaculate or sperm concentration <5 x 10^6 /ml $(1, \oplus \oplus \oplus \bigcirc)$. - 5. We recommend karyotype analysis for detecting KS in men with primary hypogonadism (low serum levels of testosterone) and elevated serum levels of gonadotropins (LH and FSH) combined with small testicular volumes (<5 ml per testis) ($1,\oplus\oplus\oplus\bigcirc$). # CHILDREN AND PRE-PUBERTAL BOYS WITH KS - 6. We suggest karyotype analysis for detecting KS in boys born with cryptorchidism, especially the bilateral forms, who do not experience spontaneous descent of the testes at the first year $(2, \oplus \oplus \bigcirc\bigcirc\bigcirc)$. - 7. We recommend to treat cryptorchidism in children with KS according to the current treatment guidelines in children without KS $(1, \oplus \oplus \oplus \bigcirc)$. - 8. We recommend general physical examinations in pre-pubertal children with KS including a testicular evaluation. These should be performed biennially or as deemed as appropriate. Suspected neurological or psychiatric deficits should be examined by respective specialists (1,⊕⊕⊕○). - 9. We suggest determination of LH and testosterone during the first 2-3 months after birth in children with prenatal diagnosis of KS when it might have a therapeutic consequence (i.e. diagnosis of micro-penis) (2,⊕○○○). - 10. We recommend against testicular tissue cryopreservation or spermatogonial stem cell retrieval in pre-pubertal children with KS $(1,\oplus\oplus\oplus\bigcirc)$. - 11. We recommend against testosterone supplementation during early childhood in all patients with KS except in cases of micro-penis $(1, \oplus \oplus \oplus \bigcirc)$. - 12. We suggest measurement of height according to centiles or standard deviation scores as well as body proportions and determinations of bone age in pre-pubertal children with KS depending on individual growth patterns $(2, \oplus \oplus \bigcirc \bigcirc)$. - 13. We suggest determination of vitamin D blood levels and adequate vitamin D and calcium supplementation in pre-pubertal children with KS (2, \oplus \bigcirc \bigcirc \bigcirc). - 14. We suggest assessment of bone mineral status during childhood in case of vitamin D deficiency biennially in patients with KS (DXA scan, size-corrected determinations using a three-step-method are required) (2,⊕○○○). - 15. We recommend measurement of weight using centiles or standard deviation scores in prepubertal children with KS $(1, \oplus \oplus \oplus \bigcirc)$. - 16. We recommend against testosterone treatment in infants and pre-pubertal boys with KS $(1,\oplus\oplus\oplus\bigcirc)$. - 17. We recommend speech therapist control and therapy, monitoring learning disabilities, social training and psychological support, in pre-pubertal children with KS if needed $(1, \oplus \oplus \oplus \bigcirc)$. #### **ADOLESCENTS WITH KS** - 18. We recommend that information on fertility issues is given to adolescent patients with KS and, if deemed adequate, his parents. There is no level of recommendation, as this can be considered good clinical practice. - 19. We suggest testicular ultrasound during puberty of patients with KS and regularly at follow up visits $(2,\oplus\bigcirc\bigcirc\bigcirc)$. - 20. We suggest semen collection in adolescents with KS after careful information and assessment of the wish of the patient and cryopreservation if motile sperm are present $(2, \oplus \oplus \bigcirc \bigcirc)$. - 21. We suggest that adolescents with KS might undergo a testicular biopsy for testicular sperm extraction (TESE) either using multifocal (standard TESE) or microdissection-TESE (mTESE) and consequent sperm cryopreservation in selected cases requiring specific counselling, provided their physical and mental maturity is apt for this decision (2,⊕⊕○○). - 22. We recommend assessment of Tanner stages, pubertal development, measurement of testosterone and gonadotropins, signs and symptoms of hypogonadism, height, weight, waist circumference and body proportions starting prior to the predicted start of puberty in patients with KS and at individually determined intervals thereafter (the time-window for the start of puberty does not differ from boys with a karyotype of 46,XY) (1,⊕⊕⊕○). - 23. We recommend testosterone supplementation in case of delayed puberty and/or signs and symptoms of hypogonadism associated with low-normal testosterone and supra-normal LH serum concentrations (LH > 2 SD
according to age-related references), after the fertility issues have been addressed (see above) $(1, \oplus \oplus \oplus \bigcirc)$. - 24. We suggest against testosterone therapy in adolescents with KS with compensated hypergonadotropic hypogonadism $(2, \oplus \oplus \bigcirc \bigcirc)$. - 25. We recommend speech therapist control, monitoring educational problems, social training and psychological support in adolescents with KS, if needed $(1 \oplus \oplus \oplus \bigcirc)$. # **ADULTS WITH KS** - 26. We recommend initiation of testosterone substitution in patients with KS with hypogonadism as diagnosed according to established guidelines on hypogonadism, if possible once fertility issues have been addressed $(1, \oplus \oplus \oplus \bigcirc)$. - 27. We recommend that testosterone substitution in patients with KS should follow the established guidelines on hypogonadism using the usually suggested monitoring intervals for clinical assessment, safety parameters (hematocrit, PSA, other) and dose titration $(1, \oplus \oplus \oplus \bigcirc)$. - 28. We recommend endocrine evaluation every 12 months in adult patients with KS who are not on testosterone substitution $(1, \oplus \oplus \bigcirc \bigcirc)$. 29. We recommend semen analysis and sperm cryopreservation in all adult patients with KS and a wish for paternity $(1, \oplus \oplus \oplus \bigcirc)$. - 30. We recommend that all adult patients with KS and confirmed azoospermia and a current or putative future wish for paternity undergo a testicular biopsy for testicular sperm extraction (TESE) either using multifocal (standard TESE) or microdissection-TESE (mTESE) and consequent sperm cryopreservation (1,⊕⊕⊕○). - 31. We suggest against starting testosterone replacement therapy in patients with KS when a TESE is planned, due to the possible suppression of gonadotropins and further suppression of remnant spermatogenesis $(2, \oplus \oplus \bigcirc\bigcirc)$ - 32. We recommend education on lifestyle and yearly assessment of weight, waist circumference, blood pressure, fasting glucose, HbA1c and lipid profile and adequate treatment in all patients with KS (1,⊕⊕⊕○). - 33. We suggest thrombosis prophylaxis prior to long-term flights or exposure to other risks in patients with KS to attenuate the increased risk for deep vein thrombosis and/or pulmonary embolism $(2, \oplus \oplus \oplus \bigcirc)$. - 34. We suggest assessment of 12-lead ECG QTc time at least once in patients with KS $(2, \oplus \oplus \oplus \bigcirc)$ - 35. We recommend following the EAA clinical guidelines on management of bone health in the andrological outpatient clinic, bearing in mind that patients with KS are at risk of low bone mineral density (BMD) and fractures independently of their serum levels of testosterone $(1, \oplus \oplus \oplus \bigcirc)$. - 36. We recommend DXA analysis at the lumbar and femoral levels and fracture risk assessment at the first visit of adult patients with KS and then on an individual basis $(1, \oplus \oplus \bigcirc \bigcirc)$. - 37. We suggest determination of vitamin D plasma levels in all adult patients with KS at the first visit and then on an individual basis, independently from their BMD, and proper vitamin D and calcium supplementation when needed $(2,\oplus\oplus\bigcirc\bigcirc)$. - 38. We recommend considering psychosexual and psychiatric issues in all adult patients with KS and to induce consultation by a specialist if required $(1, \oplus \oplus \bigcirc \bigcirc)$. - 39. We suggest attention to the putative existence of gender incongruence in patients with KS. The patient should then attend a respective specialist within a multidisciplinary setting $(2, \oplus \bigcirc \bigcirc \bigcirc)$ $(2, \oplus \bigcirc \bigcirc \bigcirc)$. This article is protected by copyright. All rights reserved - 40. We recommend breast examination for patients with KS (including mammary gland ultrasonography if necessary) for detecting gynaecomastia at the first visit and then on an individual basis and eventual treatment as per guidelines $(1, \oplus \oplus \oplus \bigcirc)$. - 41. We suggest clinical breast and axilla examinations every two years in adult patients with KS and eventual mammography and/or mammary gland ultrasonography especially in those patients with a family history of breast cancer or other reasons for suspicion thereof $(1, \oplus \oplus \bigcirc \bigcirc)$. - 42. We suggest ophthalmological assessments in patients with KS if the history points towards visual complaints $(2, \oplus \bigcirc \bigcirc \bigcirc)$. - 43. We suggest examination of the dental status in patients with KS (2, \oplus \bigcirc \bigcirc \bigcirc). - 44. We suggest attention to possible autoimmune dysfunctions in patients with KS (2, \oplus OOO) ## **GENERAL DEMANDS** - 45. We recommend the setup of multidisciplinary centres or structures to care for patients with KS $(1,\oplus\oplus\ominus\bigcirc)$. - 46. We recommend improving the transitional care for patients with KS from pediatric to adult endocrinologists/andrologists $(1, \oplus \oplus \oplus \bigcirc)$. - 47. We recommend improving knowledge about KS among doctors and society, especially by structured graduate and postgraduate education $(1, \oplus \oplus \oplus \bigcirc)$. # 1. INTRODUCTION Klinefelter Syndrome (KS) is the most frequent chromosome disorder in men, exhibiting a karyotype of 47,XXY. Symptoms in KS are highly variable. Nevertheless, frequent characteristics are small testes, azoospermia and hypergonadotropic hypogonadism. Also neurocognitive and psycho-social manifestions can be seen as well as cardiovascular, metabolic and bone-related conditions of adverse nature. Generally, morbidity and mortality are increased in KS compared to men with a karyotype of 46,XY. Both hypogonadism and genetic effects seem to contribute to this clinical spectrum. Among physicians, knowledge about KS regarding diagnosis and treatment is distributed unevenly. KS is not fully known to many physicians and there is a marked need for a respective improvement of medical curricula. Whereas KS is usually considered in all guidelines dealing with the management of hypogonadism, no specific guideline and recommendation has ever been published to care for patients with KS in various developmental stages. The aim of the present study is summarize available evidence on KS providing a list of suggestions and recommendations on behalf of European Academy of Andrology (EAA) and endorsed by the European Society of Endocrinology in order to correctly manage patients with KS from prenatal period to adulthood. ### 2. METHODOLOGY OF THE GUIDELINE COMPOSITION ### 2.1. Data identification The EAA guidelines committee commissioned an expert task force of academicians with clinical expertise in the field to create new guidelines for the management of KS. All experts involved are andrologists with a various background (urology, genetics, paediatrics, endocrinology). PubMed was searched for articles in English with the search term "Klinefelter" (the search period involved all literature regarding KS starting from 1942 to June 2020). The text was drafted in a group effort following scrutiny and discussion of the best evidence from published literature. Thus, a series of consensus recommendations and suggestions according to the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) system was generated (1). # 2.2. Levels of evidence and grades of recommendation The GRADE system is a method of developing evidence-based guidelines, involving key recommendations and the use of a consistent language and graphical descriptions for standardizing the grading of both the strength of recommendation and the quality of the evidence (1), widely used from scientific societies including the EAA. According to GRADE, the task force used the following internationally shared coding system: [1] "we recommend" indicates a strong recommendation; [2] "we suggest" denotes a weak recommendation. As far as the evidence grading is concerned: \oplus OOO denotes "very low-quality evidence"; \oplus OOO "low quality", \oplus \oplus OOO "moderate quality" and \oplus OOO "high quality". Largely, a " $\oplus \oplus \oplus \oplus$ " score is awarded to evidence that is based on randomized controlled trials (RCTs) and meta-analyses, and a " $\oplus \oplus \bigcirc \bigcirc$ " score to evidence that is based on observational studies. Specific methodological characteristics (quality, consistency, directness, effect size) increase or decrease this score. ## Statements on AETIOLOGY AND PREVALENCE - I. Klinefelter Syndrome (KS) is the most frequent sex chromosomal anomaly in males, described by a karyotype with one or more extra X Chromosome (most frequently 47,XXY) in men. - II. KS is associated with testicular malfunction resulting very often in hypogonadism and/or infertility - III. The classical description of the adult male with KS includes primary testicular failure with small testes (1-5 mL), hypergonadotropic hypogonadism, gynaecomastia, infertility (mostly azoospermia), sparse body hair, extended body length in relation to parentally derived target height, an increased risk for osteoporosis, metabolic syndrome and psychosocial disturbances - IV. Except for small testes, no consistent clinical features or specific abnormalities irrespective of age have been identified - V. The phenotypic spectrum is extremely wide, and the main clinical features are not present in infancy and childhood and may not become evident until after the onset of puberty - VI. The cohort of men with KS exhibits an increased morbidity and mortality compared to the general male population ## 2.3. Aetiology The supernumerary X of KS originates in 50% from paternal nondisjunction of sex chromosomes during meiosis I. The remaining 50% originate from maternal nondisjunction during meiosis I or II, or during early post-zygotic mitotic divisions (2,3). An
association of the frequency of KS with increasing maternal age can be attributed to maternal meiosis I errors. An association of paternally derived 47,XXY with the father's age has been described, as well (4). Gene-dosage effects, of which SHOX related to the tall stature in KS is a leading example (5), in combination with escapee genes from X-chromosomal inactivation, are most likely co-factors constituting the phenotype (4,6,7). In addition, the androgen receptor (AR) gene, located in Xq11.2–q12, is of interest concerning genotype/phenotype correlations. The AR gene contains a highly polymorphic trinucleotide repeat (CAG)n in exon 1, which is correlated with physiological androgen effects and might be associated with androgen-dependent features of KS (6,8,9). FSH polymorphisms might affect serum FSH in men with KS (10), as well as other genetic features of the X chromosome might contribute to phenotype variations (11). ### 2.4. Prevalence The prevalence of KS is 1-2/1000 according to studies involving systematic screening of male newborns in the 1960-1970s (12-14). Subclasses of KS are the classic 47,XXY form, which represent approximately 80–90% of the cases, higher-grade aneuploidies (48,XXXY, 49,XXXXY or 48,XXYY), mosaicisms (mainly 47,XXY/46,XY), and structurally abnormal X chromosomes (e.g. 47,iXq,Y) (15,16) that overall account for the remaining 10-20% of cases. However, the prevalence of a 47,XXY karyotype among male blastocysts examined during preimplantation genetic testing (PGT) has been reported as 0.9% (17/1794), with a significant correlation with maternal age. This discrepancy might suggest that 47,XXY blastocysts result in a lower implantation rate and/or higher early miscarriage rate than euploid embryos or that infertile patients of advanced maternal age and referred to IVF/PGT produce a higher rate of 47,XXY blastocysts (17). ## 2.5. Low diagnostic rate The typical clinical phenotype of men with KS, as described in the earlier literature, is present in a minority of patients (Figure 1). Phenotypic variability, and especially a presentation with mild clinical features, often leads to diagnostic delay or non-diagnosis (8,15,18). It has been estimated that 50-75% of males with KS never obtain a diagnosis (19,20). To increase the diagnosis rate, screening all male newborns has been suggested (21). This, for example, can be facilitated by the detection of an increased gene copy number in DNA from dried blood spot samples (22). In general, efforts that improve our ability to reach an early diagnosis should be encouraged. Moreover, since the great majority of men with KS are diagnosed during infertility evaluation and pre- pubertal clinical signs are not specific for KS, diagnosis during childhood and adolescence is quite rare, representing about 10% of all the diagnoses (19). Indeed, the advantages of a correct diagnosis and early diagnosis are evident for better management and prevention of diseases related to KS (15,21). # 3. CLINICAL PICTURES, DIAGNOSTIC STEPS AND THERAPY ## 3.1. Genetics ### Recommendations - 1. We recommend that a prenatal diagnosis of KS is confirmed on a chromosome analysis on peripheral blood postnatally $(1, \oplus \oplus \oplus \bigcirc)$. - 2. We recommend conventional karyotyping on peripheral blood cells for diagnosis of KS $(1,\oplus\oplus\oplus\bigcirc)$. - 3. We recommend that patients with KS and/or their parents are offered genetic counselling; prenatal counselling should be non-directive $(1, \oplus \oplus \oplus \bigcirc)$. - We recommend karyotype analysis for detecting KS in men with non-obstructive azoospermia or (severe) oligozoospermia (total sperm count < 10 x 10⁶/ejaculate or sperm concentration <5 x 10⁶/ml (1,⊕⊕⊕○). - 5. We recommend karyotype analysis for detecting KS in men with primary hypogonadism (low serum levels of testosterone) and elevated serum levels of gonadotropins (LH and FSH) combined with small testicular volumes (<5 ml per testis) (1,⊕⊕⊕○). ### Evidence Diagnosis of KS depends on determination of the karyotype (2,3,8). The prevalence of KS rises up to 3-4% among infertile males, to 6% among men with a total sperm count <10 million/ejaculate and to 10-15% in non-obstructive azoospermic subjects (23,24). The majority of men with KS are azoospermic and only 10% approximately present with severe oligozoospermia or cryptozoospermia, whereas the prevalence in men with normozoospermia is virtually zero (2,3,8). Low testosterone levels are described in about 50% of adults with KS (2,18), but nearly all patients have elevated LH levels which reflects the primary testicular (Leydig cell) damage in these patients. Therefore, overt or subclinical hypogonadism is almost a hallmark of KS (25) and clinical signs of hypogonadism are present in most men. However, the real prevalence of KS among men with primary or subclinical hypogonadism is not known. # Values and Remarks Determination of karyotype in patients with suspicion of KS or the exclusion thereof determines the pathway of counselling, further diagnostics and treatment. We place a high value on the recommendation on conventional karyotyping as the choice for confirming a clinical suspicion of KS. Karyotyping should be considered in cases of low testicular volume (<5ml) which may also be present without overt primary hypogonadism, apart from non-obstructive azoospermia or severe oligozoospermia (which must be confirmed in more than one semen analysis). Other possible causes of non-obstructive azoospermia or severe oligospermia must be considered. Especially cases with central hypogonadism might present with small testes, non-obstructive azoospermia or severe oligozoospermia and not all of them are candidates for karyotype analysis. KS may be diagnosed prenatally by cytogenetic evaluation [conventional karyotyping or array-CGH (array-comparative genomic hybridization)] of chorion villus tissue or amniotic fluid. Massively parallel sequencing of circulating cell-free fetal DNA in maternal plasma has allowed for the development of non-invasive prenatal testing (NIPT). Currently, NIPT is widely used for the screening for autosomal trisomies, such as trisomy 13, 18 and 21. However, data on sensitivity and specificity of the detection of sex chromosome aneuploidies (SCA) is sparse and there is a tendency towards increased false positive results. Importantly, NIPT is not a diagnostic test and requires cytogenetic confirmation (26). In cases of pre-natal diagnosis of KS, genetic counselling is strongly advised and in some countries even mandatory according to law. Such counselling is non-directive and will inform the parents about the putative risks for patients with KS, up-to-date treatment options and experiences of clinicians treating children, adolescents and adults with KS. Contact to KS patient and parent groups may be provided. Any decision of the parents regarding the child must be absolutely individual Additional screening for mosaicism on higher number of metaphases, potentially using fibroblasts or array-CGH, is suggested if the clinical suspicion is strong and the result of the chromosome analysis is normal. However, the more expensive analyses such as array-CGH are not recommended for routine use. Determination of the length of the CAG repeat polymorphism of the AR gene (a parameter inversely related to androgen sensitivity) might be useful in decision-making regarding androgen replacement in cases of patients exhibiting features of hypogonadism and low-normal serum testosterone concentrations (6,9). Diagnostic procedures related to hypermethylation and differential gene expression remain experimental and do not have direct clinical consequences at this time. # 3.2. Developmental issues in infants and pre-pubertal children # 3.2.1. Testicular development and function of the hypothalamic-pituitary-testicular axis ### Recommendations - 6. We suggest karyotype analysis for detecting KS in boys born with cryptorchidism, especially the bilateral forms, who do not experience spontaneous descent of the testes at the first year $(2, \oplus \oplus \bigcirc \bigcirc)$. - 7. We recommend treating cryptorchidism in children with KS according to the current treatment guidelines in children without KS $(1, \oplus \oplus \oplus \bigcirc)$. - 8. We recommend general physical examinations in pre-pubertal children with KS including a testicular evaluation. These should be performed biennially or as deemed as appropriate. Suspected neurological or psychiatric deficits should be examined by respective specialists (1,⊕⊕⊕○). - 9. We suggest determination of LH and testosterone during the first 2-3 months after birth in children with prenatal diagnosis of KS when it might have a therapeutic consequence (i.e. diagnosis of micro-penis) (2,⊕○○○). - 10. We recommend against cryopreservation of testicular tissue or spermatogonial stem cells retrieved from pre-pubertal children with KS $(1, \oplus \oplus \oplus \bigcirc)$. - 11. We recommend against testosterone supplementation during early childhood in all patients with KS except in cases of micro-penis $(1, \oplus \oplus \oplus \bigcirc)$. In KS, testicular degeneration and abnormal testicular function may start during the fetal period of life and worsen with age, but no reliable data exist on ultrasound imaging of the testes in children with KS (27,28-31). Some boys with KS show clinical signs of intrauterine hypogonadism such as cryptorchidism, reduced penile length and testicular volume (32-35). Boys with KS rarely fulfil the criteria for micropenis (<-2.5 SD), although, one study found a prevalence of 17% (35). In otherwise healthy patients with testicular failure and micro-penis, testosterone therapy in infancy is widely accepted (36-38). Patients with cryptorchidism may have a prevalence of 3 - 4% of chromosomal anomalies, especially frequent in the bilateral form of cryptorchidism (39). Among chromosomal anomalies detected in cryptorchid boys, KS
represents the most frequent alteration. A study on 600 newborns with isolated cryptorchidism found a prevalence of KS of 1.3% that increased to 2.6% when considering only boys who were still cryptorchid at 12-24 months (39). The prevalence of KS was even higher in persistent bilateral forms of cryptorchidism (4.2%) than in unilateral forms (1.6%) (39). However, the exact prevalence of cryptorchidism at birth in patients with KS is unclear, and few studies examined this aspect. The largest studies reported that 27-37% of patients with KS had a history of undescended testes (2,40,41). Orchidopexy before the age of twelve months is recommended as for non-KS cryptorchid boys (36,42). Treated cryptorchidism does not reduce the chances for positive sperm retrieval in patients with KS (43). Conflicting data regarding the surge in testosterone during the first 3 months after birth (mini puberty) have been published. Some studies demonstrated low testicular testosterone levels in infants with KS (44,45). Another study reported testosterone concentrations within the normal range but significantly lower than controls (46). A recent investigation showed that during mini-puberty of infants with KS, serum levels of FSH and LH were significantly higher than in controls (p < 0.05), as were Inhibin-B and T (respectively p < 0.0001 and p < 0.005). No significant differences were found in height, weight, testicular volume, and penile length (47). General pre-pubertal concentrations of testosterone, estradiol, FSH and LH are normal (48-57). However, some studies have shown that boys with KS may already be androgen deficient before puberty (34,35,58). Values and Remarks Preservation of testicular functions, especially sperm production, is closely linked to descended testes. As these testicular functions are impaired in KS anyway, these patients require high attention to management of undescended testes as early as possible (Table 1). Testicular ultrasound may help to assess testicular development, but testicular palpation may also yield the required information. We recommend against testicular tissue cryopreservation and against spermatogonial stem cell retrieval in children with KS. So far, these procedures are not justified as there is no method of *in vitro* spermatogenesis, but this may change in future (59). We place a moderate value on the recommendation regarding determination of LH and FSH during the first three months after birth because treatment of hypogonadism in this period of life is currently not recommended. We place a high value to the recommendation against testosterone supplementation during early childhood in all patients with KS, as it has currently no justification. However in cases of micro-penis, serum hormone assessment could provide a justification for short term low-dosed systemic testosterone treatment or local application of dihydrotestosterone (38; Table 1). The postnatal surge of sex hormones during the so-called mini-puberty represents a diagnostic window for evaluating the hypothalamic-pituitary-testicular axis in infancy and recognize poor testicular function and hypogonadism (60). The result of poor testicular hormonal function may be cryptorchidism (61). Endocrine evaluation of the testicular function before puberty is challenged by very low concentrations of testosterone and low sensitivity of the generally available hormone-assays. Therefore, only very limited conflicting data exist (62) (also see 4.2.4). ### 3.2.2. Growth #### Recommendation 12. We suggest measurement of height according to centiles or standard deviation scores (SDS) as well as body proportions and determinations of bone age in pre-pubertal children with KS depending on individual growth patterns $(2, \oplus \oplus \bigcirc \bigcirc)$. During early infancy growth of the KS boys is usually within the normal range. By the age of 5-6 years growth velocity might be accelerated resulting in significantly taller stature than expected on the basis of parental target height (5,32, 63-67). In addition, significantly increased leg length already before puberty has been reported by several authors (63-65,67-69). ### Values and Remarks Growth should be monitored assessing height and body proportions in boys with Klinefelter syndrome, whenever possible according to centiles or SDS for the reference ethnic group of the patient and bone age should be determined in selected cases. However, the only parameters which would justify an intervention by testosterone supplementation are excessive growth compared to the estimated parental-derived target height or abnormal body proportions (5,64,65). In these cases determination of bone age is important (Table 1). The side effects on physical and psychological parameters can be rather significant and this form of therapy is rarely used nowadays. Since high dose T treatment is required to stop over-tall growth, and effects on testicular functions are unknown, such a procedure is generally seen with reluctance. ### 3.2.3. Bone mineralization ### Recommendations - 13. We suggest determination of vitamin D blood levels and adequate vitamin D and calcium supplementation in pre-pubertal children with KS $(2, \oplus \bigcirc \bigcirc \bigcirc)$. - 14. We suggest assessment of bone mineral status during childhood in case of vitamin D deficiency biennially in patients with KS (DXA scan, size-corrected determinations using a three-step-method are required) (2,⊕○○○). Normal lumbar bone mineral density (BMD), and whole body bone mineral content (BMC) as evaluated by whole body DXA scan in KS boys and adolescents (4.3 - 18.6 years of age) has been reported, indicating that the risk of osteopenia/osteoporosis may not be present until after puberty (70). It was found in a group of 7/40 KS boys (11.96 \pm 3.97 years of age) that z-scores \leq -2.0 as evaluated by phalangeal amplitude-dependent speed of sound were present as well as higher parathyroid hormone levels and a significant reduction of 25-hydroxyvitamin D concentrations. This study is rather small and needs confirmation (71). #### Values and Remarks Studies evaluating the bone status and metabolism of children and adolescents with KS are very rare and not uniform. We place a moderate value on the recommendation to check vitamin D levels and, if needed, supplement with vitamin D preparations and calcium to maintain healthy bones. We put a moderate value on the recommendation to assessment of bone mineral status because it is important to diagnose and treat osteopenia/osteoporosis as soon as possible to allow achievement of peak bone mass, but probably only less than 20% of children with KS will suffer from osteopenia/osteoporosis (Table 1). # 3.2.4. Body composition ### Recommendations - 15. We recommend measurement of weight using centiles or standard deviation scores in prepubertal children with KS $(1, \oplus \oplus \oplus \bigcirc)$. - 16. We recommend against testosterone treatment in infants and pre-pubertal boys with KS $(1,\oplus\oplus\oplus\bigcirc)$. Findings of an unfavourable body composition already present in childhood and early adolescence with elevated body fat mass despite normal body mass index and normal lean body mass for age as determined by DXA (70) or triceps/subscapular skinfolds (32,40,66,72) point out causes other than low testosterone. Genetic causes (overexpression of X-linked genes, skewed X-chromosome inactivation or a longer-than-normal CAG-repeat polymorphism in the *AR* gene) and psychosocial aetiologies are both plausible: studies addressing these possible relations have to be further validated (4,6,73-76). Testosterone supplementation in early childhood was proposed, particularly in the USA (77-79). An improved neurodevelopmental outcome in boys with KS treated with testosterone during infancy compared to non-treated boys with KS was claimed, but the treatment was not randomized or blinded (77,78). Two randomized trials have been conducted in children with KS. The effect on body composition in 20 infants aged 6 to 15 weeks who were randomized to testosterone injections or no treatment was also evaluated. A normal fat mass in treated boys compared to untreated boys was seen, the latter presenting with a significant accumulation of fat tissue as compared to 46,XY-controls (79). In addition, a double-blind, randomized, placebo-controlled study evaluated treatment with low-dose synthetic oral androgen (oxandrolone) in prepubertal boys aged 4 to 12 years (80-82). The authors reported improvements in areas of visual- motor performance, anxiety/depression, and social functioning, but no effect on cognition or attention (82). Furthermore, a significant reduction in body fat, triglycerides and high-density lipoprotein was found (80). Importantly, the oxandrolone treated boys had an increased risk of early gonadarche and pubarche, as well as advanced bone age, although no significant differences in T and gonadotropin concentrations between treated and untreated boys were found (81). # Values and Remarks We place a high value on the recommendation to assess weight and possibly fat/lean proportions as well as keeping them within normal range as they are important for subsequent metabolic equilibrium (Table 1). To this end, also waist circumference and, where available, triceps/subscapular skinfolds can be assessed in pre-pubertal children with KS on an individual basis. Further randomized controlled trials are required to confirm possible positive short- and long-term effects of testosterone treatment in infants and pre-pubertal boys with KS (Mason et al. 2020). Current knowledge does not support such a treatment. # 3.2.5. Psychological aspects #### Recommendations 17. We recommend speech therapist control and therapy, monitoring learning disabilities, social training and psychological support, in pre-pubertal children with KS if needed $(1,\oplus\oplus\oplus\bigcirc)$. ### Evidence Boys with KS are known to have an
increased risk for psychosocial and educational problems (66,83). General intelligence in KS is preserved variably and verbal abilities might be decreased. KS can, albeit not mandatorily, present with lower general cognitive abilities, reduced knowledge achievements as well as some attenuated aspects of attention and executive functions (83-92). In patients with KS, the cognitive phenotype is often described by impaired performance on measures of language development, visuospatial and academic abilities. In younger boys with KS, a delay in speech development may be observed, whereas significant deficits in higher aspects of expressive language are more common in adolescents. In addition, it has been shown that KS is associated with difficulties in identifying and verbalizing emotions. Furthermore, patients with KS may be more easily emotionally aroused (93-98). There are also reports about an increased distractibility and an increased risk for hyperactivity and attention problems in patients with KS (90,99-101). ## Values and Remarks We place a high value to the recommendations to monitor speech development, learning abilities as well as psychosocial problems and give support, if necessary (Table 1). There are suggestions that early testosterone treatment may improve psychological development in patients with KS (66,77,78,102). However, data are lacking quality to recommend this procedure to all children with KS (103). So far, scientific evidence is not sufficient to support this procedure. # 4.4. Developmental issues in puberty and adolescence # 4.4.1. Spermatogenesis #### Recommendations - 18. We recommend that information on fertility issues is given to adolescent patients with KS and, if deemed adequate, his parents (Good Clinical Practice statement). - 19. We suggest testicular ultrasound evaluation during puberty of patients with KS and regularly at follow-up visits $(2, \oplus \bigcirc \bigcirc \bigcirc)$. - 20. We suggest semen collection in adolescents with KS after careful information and assessment of the wish of the patient and cryopreservation if motile sperm are present $(2, \oplus \oplus \bigcirc \bigcirc)$. - 21. We suggest that adolescents with KS might undergo a testicular biopsy for testicular sperm extraction (TESE) either using multifocal (standard TESE) or microdissection-TESE (mTESE) and consequent sperm cryopreservation in selected cases requiring specific counselling, provided their physical and mental maturity is apt for this decision $(2, \oplus \oplus \bigcirc \bigcirc)$. # Evidence At the beginning of puberty, which in general occurs at a normal age, testes grow to a minor extent and subsequently shrink. In parallel with this, gonadotropin levels rise to the greatly elevated serum concentrations as seen in adults with KS. The degeneration of germ and Sertoli cells accelerates during puberty, and moreover, extensive fibrosis and hyalinization of the seminiferous tubules occur, as well as hyperplasia of Leydig cells and fibrosis of the interstitium (27-30). Spermatogenesis cannot be observed in the majority of seminiferous tubules. However, a few tubules with ongoing spermatogenesis and few spermatozoa can be found. In adolescents aged 13-14 years, spermatozoa were collected in only 10% of the TESE attempts, while in adolescents of 15–19 years, spermatozoa were found in 45% (104). Sperm retrieval rates by TESE in adolescents with KS aged 15-19 years are comparable with those reported in young adults who are 20-30 years old (105-107). It was also found that adolescents with LH \leq 17.5 IU/I, along with testosterone levels \geq 7.5 nmol/I had the best success rate (54%), which fell to 44% with higher serum LH levels, whereas those with low serum testosterone concentrations (<7.5 nmol/I), had no sperm retrieval, irrespective of LH (106). See Figure 2a-c for an example of testicular tissue in KS. ### Values and Remarks We place a high value to the recommendation to provide the information on fertility status and treatment possibilities to the patients with KS and their parents. It is important that further medical treatment is undertaken within a setting of empowerment of the patient and his family. We place a lower value to the suggestion regarding semen collection and TESE in adolescents, because not all pubertal patients are psychologically ready to focus on fertility and because success rates are similar if these procedures are performed later. Adolescents might undergo a surgical procedure to attempt a TESE, provided they exhibit physical and mental maturity and the decision to preserve their fertility is clearly not made by the parents but the patient himself. We put also a moderate value to the recommendation to perform testicular ultrasound every year, because it may help to assess testicular development. Not all pubertal patients are mature enough to talk about their fertility. However, all patients with KS should be fully informed on their fertility status and possibilities of fertility preservation (108). Information should be provided at a level appropriate to the patient's age and cognitive level (table 1). ### 4.3.2. Function of the hypothalamic-pituitary-testicular axis ### Recommendations 22. We recommend assessment of Tanner stages, pubertal development, measurement of testosterone and gonadotropins, signs and symptoms of hypogonadism, height, weight, waist circumference and body proportions starting prior to the predicted start of puberty in patients with KS and at individually determined intervals thereafter (the time-window for the start of puberty does not differ from boys with a karyotype of 46,XY) (1,⊕⊕⊕○). - 23. We recommend testosterone supplementation in case of delayed puberty and/or symptoms of hypogonadism associated with low-normal testosterone and supra-normal LH serum concentrations (LH > 2 SD according to age-related references), after the fertility issues have been addressed (see above) $(1, \oplus \oplus \oplus \bigcirc)$. - 24. We suggest against testosterone therapy in adolescents with KS and with compensated hypergonadotropic hypogonadism $(2,\oplus\oplus\bigcirc\bigcirc)$. ## Evidence From around mid-puberty testosterone and INSL3 concentrations stop to increase and remain in the low normal range in most patients with KS (48,49,51,109,110). Concomitantly, FSH and LH concentrations increase to hypergonadotropic levels (48,49,51,109,111). Inhibin B concentrations increase, but not as much as expected during puberty, and decline markedly within a year of pubertal onset and remain undetectable from the end of puberty onwards in the vast majority of patients with KS (28,50,111). The physiological pubertal decline in serum AMH occurs later in boys with KS than observed in healthy boys (53,55,112). Estradiol levels have been reported to be normal (113) or high (114). A central issue is the normative age-related secretion of LH. Data are scarce and might be specific to local laboratories. There are some publications reporting such age-related values (56,115). A hypergonadotropic state with compensated hypogonadism is found in over 60% of KS cases allowing for spontaneous accomplishment of pubertal development (104). However, about 25% of patients with KS have testosterone below normal levels and in some cases the diagnosis is made because of prolonged progression of pubertal development, which should not be confused with a delayed onset of puberty (111). ## Values We place a high value on the recommendation for peripubertal examinations. These should be based on an individual prediction of pubertal onset, which is derived from the parents' pubertal history. Assessment of the fertility status should ideally be performed before the start of testosterone substitution. We place a high value on the recommendation to treat patients with KS and low testosterone levels as well as accompanying symptoms of androgen deficiency with an adequately dosed testosterone replacement (Table 1). ### Remarks There are only a small number of studies on testosterone supplementation in patients with KS during puberty, and no controlled trials. However, such a regimen may ensure, as in other adolescents with hypogonadism, normal completion of puberty as well as improved physical and psychological development, educational achievements and social integration (116-122). Randomized controlled trials are needed to elucidate the influence of testosterone replacement therapy on pubertal development and spermatogenesis in patients with KS. There are also no randomized controlled trials evaluating the possible deleterious impact of testosterone treatment on successful sperm retrieval or its possible effects on reproductive outcomes in men with KS. Testosterone preparations may theoretically suppress any remaining spermatogenesis if the endogenous LH drive is reduced. Therefore, it is better to assess the fertility status before this treatment. However, individual decisions should be made. The use of hCG or antiestrogens (aromatase inhibitors or selective estrogen receptor modulators) on compassionate care grounds may have a positive effect on gonadotropin secretion even in the hypergonadotropic state as seen in KS. Theoretically, this may result in higher levels of intra-testicular as well as serum testosterone and maintained (or even augmented) spermatogenesis. However, no controlled trials are available and evidence is poor. Hence, such therapies cannot be recommended in general. No data have been published on the possible positive or negative effects of testosterone treatment in boys with KS and compensated hypergonadotropic hypogonadism. It is suggested that in the absence of clinical signs and symptoms of hypogonadism these boys should not be treated with testosterone. # 4.3.3. Cognitive and psychological aspects **Recommendations** 25. We recommend speech therapist control, monitoring educational problems, social training and psychological support in adolescents with KS,
if needed $(1, \oplus \oplus \ominus)$. As younger children with KS, pubertal boys might have educational and psychosocial problems. Boys with KS might show deficits in verbal memory, verbal fluency, word retrieval, expressive/receptive vocabulary difficulties, as well as planning, organization and decision-making problems (90,91,123-126). Although all of these have been related to lower school/academic performance, patients with KS are not generally learning disabled. Limitations in communication might affect social adaptation and behavioural aspects, as well as the development of personality, which may result in social and professional problems (6,126,127). #### Values and Remarks We place a high value to the recommendation to monitor speech development, educational, social and psychosocial problems and give support, if necessary (Table 1). Notwithstanding, further studies are needed to evaluate the impact of educational and psychosocial problems of patients with KS on their final education, socio-economic status, psychological well-being and general quality of life in adulthood. Also see recommendation #16 against testosterone treatment during childhood in KS. # 3.3. Pathophysiology and clinics in adults # 3.4. 4.4.1. Hypogonadism Recommendations - 26. We recommend initiation of testosterone substitution in patients with KS with hypogonadism as diagnosed according to established guidelines on hypogonadism, if possible once fertility issues have been addressed (1,⊕⊕⊕○). - 27. We recommend that testosterone substitution in patients with KS should follow the established guidelines on hypogonadism using the usually suggested monitoring intervals for clinical assessment, safety parameters (haematocrit, PSA) and dose titration (1,000). - 28. We recommend endocrine evaluation every 12 months in adult patients with KS who are not on testosterone substitution $(1, \oplus \oplus \bigcirc \bigcirc)$. # Evidence Most adults with KS have serum testosterone levels within the low-normal or sub-normal range, but some may have very low amounts of this steroid and others may even have normal levels. In adult patients with KS, not only levels of testosterone, but also insulin-like factor 3 (INSL3), and inhibin are decreased, whereas FSH and LH are highly elevated, while estradiol and SHBG are comparable to controls. Testosterone replacement therapy in adult men with KS should follow the established guidelines on diagnosis and treatment of hypogonadism (128). #### Values and Remarks Assessment of serum concentrations of sex steroids and gonadotropins is pivotal to understand the status of the patients with KS in terms of possible hypogonadism and fertility issues (table 2). It is paramount to monitor these values and safety parameters to tailor the hormone replacement therapy to establish the known benefits and avoid side-effects (2,8). Treatment of hypogonadism in KS should be started as soon as diagnosis is made. The effects of testosterone replacement might be modulated by the CAG-repeat polymorphism within the AR gene (6). A recent meta-analysis including 21 observational and 22 interventional studies showed that non-treated patients with KS have worse metabolic profiles (fasting glycemia, HOMA index, HDL, LDL) and body composition (BMI, waist circumference) and reduced BMD with respect to controls. On the other hand, testosterone treatment in hypogonadal men with KS improved body composition and BMD at the spinal level. The effects on lipid and glucose profile were less significant evident (129). Larger and longer placebo-controlled RCT are necessary however to fully understand the benefits of testosterone treatment in KS. ### 4.4.2. Infertility # Recommendations 29. We recommend semen analysis and sperm cryopreservation in all adult patients with KS and a wish for paternity (1,⊕⊕⊕○). - 30. We recommend that all patients with KS and confirmed azoospermia as well as a current or putative future wish for paternity undergo a testicular biopsy for testicular sperm extraction (TESE) either using multifocal (standard TESE) or microdissection-TESE (mTESE) and consequent sperm cryopreservation (1,⊕⊕⊕○). - 31. We suggest against starting testosterone replacement therapy in patients with KS when a TESE is planned, due to the possible suppression of gonadotropins and further suppression of remnant spermatogenesis $(2, \oplus \oplus \bigcirc\bigcirc\bigcirc)$ ### Evidence Motile sperm that can be cryopreserved from semen are found in approximately 10% of men with KS. In azoospermic men focal spermatogenesis may be discovered with the possibility of surgical extraction of viable sperm. See Figure 2a-c for an example of testicular tissue in KS. No differences in terms of sperm retrieval have been found between classic-TESE and micro-TESE (130). Sperm can be found in about 30-60% of patients with KS and the reported live birth rate by assisted reproduction is about 16%. Although no direct comparison is available, the success rate of ICSI seems to be reduced in KS when compared to the general population (131). ### Values We place high value on these recommendations because semen sampling is a non-invasive procedure and semen sampling should therefore be offered after puberty as soon as the patient can provide a sample (Table 2). Conventional TESE or micro-assisted TESE (mTESE) in azoospermic patients with KS is the next step to obtain sperm. These sperm can be used later for methods of assisted reproduction (ICSI). ## Remarks As offspring seems not to be affected by the genetic condition of the father, it is unclear whether offering PGT or prenatal genetic analyses is required. Genetic counselling however is mandatory. In fact it is the question whether 47,XXY spermatogonia are able to complete meiosis or, in contrast, some spermatogonia lose the supernumerary X chromosome, hence becoming normal 46,XY cells and then proceed through meiosis. It is still debated whether the chances to find foci within the testes with remnant intact spermatogenesis decrease with advancing age in KS (132-134). Fertility in KS may also be linked to their Leydig cell functionality (106). Nevertheless, in difference to adolescents and younger men with KS (see above), no clinical, biochemical or hormonal parameter has been clearly associated with higher or lower chances of finding sperm in adult men with KS. Similarly, it is unclear whether previous testosterone treatment decreases the success rate of TESE. Therefore, we cannot recommend for or against stopping testosterone therapy prior to TESE, but suggest against starting testosterone treatment when a TESE is planned. Hypogonadal men not receiving testosterone therapy might be treated on compassionate care grounds with hCG or antiestrogens (aromatase inhibitors or selective estrogen receptor modulators, see 4.3.2.). However, no controlled trials are available and evidence is poor. Hence, such approaches cannot be recommended in general. # 4.4.3. Metabolic disorders, body composition, cardiovascular risk and thrombosis #### **Recommendations** - 32. We recommend education on lifestyle and yearly assessment of weight, waist circumference, blood pressure, fasting glucose, HbA1c and lipid profile and adequate treatment in all patients with KS(1,⊕⊕⊕○). - 33. We suggest thrombosis prophylaxis prior to long-term flights or exposure to other risks in patients with KS to attenuate the increased risk for deep vein thrombosis and/or pulmonary embolism $(2, \oplus \oplus \oplus \bigcirc)$. - 34. We suggest assessment of 12-lead ECG QTc time at least once in patients with KS (2, \oplus OOO). ### Evidence Men with KS suffer from higher rates in various diseases and a higher mortality, which results in a shortened lifespan (about 2-3 years) (8,41,135-140). KS is associated with increased fat mass and reduced lean mass, promoted by the intrinsic genetic background as well as hypogonadism. The resulting insulin resistance predisposes men with KS to a higher risk of developing type 2 diabetes mellitus (4,8,41,76,135,141). The conditions named above can explain, at least partially, the increased cardiovascular mortality and morbidity observed in patients with KS (8,41,135-140). These comorbidities are strongly related to hypogonadism (Corona et al. 2018). However, the latter cannot entirely explain the increased CV risk and other factors (such as epigenetic mechanisms and *AR* functionality) are most likely involved (4,6,9,142). Accordingly, testosterone replacement therapy does not completely attenuate the increased cardiometabolic risk (129). There is some evidence that the cardiorrhythmic integrity of patients with KS is impaired, resulting in a reduced QTc time, which may eventually lead to sudden cardiac arrest. This impairment is most likely caused by gene over-dosage effects related to the additional X-chromosome. As this pathology may result in a life-threatening condition, we make suggestion No 33, although data are still based on smaller numbers of patients with KS (4, 143). A higher risk of thrombosis has been described in men with KS. The risk of deep vein thrombosis and pulmonary embolism is elevated in KS, with an overall three- to six-fold increased risk as compared to the general population (8,41,135-140,144). The risk may be attributed to higher levels of the procoagulatory substance PAI-1, which is associated with the genetic setting in KS as well as with lower testosterone levels (4). Testosterone treatment may reduce this risk, but evidence is still low (145,146). ### Value and Remarks We place a high value to the recommendations to give the patients correct information on lifestyle intervention (physical activity, diet) to minimize cardiovascular risk factors, to monitor regularly cardiovascular risk factors, and treat obesity, diabetes and dyslipidemia (Table 2). Maintaining eugonadal testosterone levels is most likely important to attenuate the chances of promoting a metabolic syndrome with
advancing age in patients with KS, but evidence is still poor. Randomized controlled trials are needed to elucidate the role of testosterone substitution in patients with KS in the prevention of an unfavourable body composition, metabolic syndrome and type 2 diabetes mellitus. A recent meta-analysis demonstrates that testosterone substitution ameliorates body composition, but not other cardiovascular risk factor (129). However, this conclusion is drawn mainly from observational studies (also see 4.4.1). ## 4.4.4. Bone disorders ### Recommendations - 35. We recommend following the EAA clinical guidelines on management of bone health in the andrological outpatient clinic, bearing in mind that patients with KS are at risk of low bone mineral density (BMD) and fractures independently of their serum levels of testosterone $(1, \oplus \oplus \oplus \bigcirc)$. - 36. We recommend DXA analysis at the lumbar and femoral levels and fracture risk assessment at the first visit of adult patients with KS and then on an individual basis $(1, \oplus \oplus \bigcirc \bigcirc)$. - 37. We suggest determination of vitamin D plasma levels in all adult patients with KS at the first visit and then on an individual basis, independently from their BMD, and proper vitamin D and calcium supplementation when needed $(2,\oplus\oplus\bigcirc\bigcirc)$. ### **Evidence** Bone density is likely to be reduced in hypogonadism in general, as outlined in the respective EAA guideline (147) and low bone mass and osteopenia/osteoporosis with a subsequent higher risk of fractures is present in up to 40% of patients with KS (122,148-150). However, no clear relation between serum levels of testosterone and BMD has been found in patients with KS and osteopenia/osteoporosis might also be present when testosterone concentrations are within the normal range (75). The decrease in bone mass is due to both reduced bone formation and higher bone resorption (148), and might be linked to a lack of peak bone mass at the end of puberty. The higher fracture risk is linked also to other factors than hypogonadism and low bone mineral density (BMD) (hypovitaminosis D, unfavourable ratio of fat mass/lean mass, associated comorbidities, low INSL3, X inactivation, *AR* sensitivity) (6,148,149,151), as evidenced also by studies analyzing bone formation and bone resorption serum markers such as osteocalcin (152) and sclerostin (153). Patients with KS are likely to improve bone density upon testosterone replacement therapy (151), similar to observations in other patients with primary hypogonadism (129). Correction of vitamin D deficiency is also fundamental to maintain BMD (150). Calcitriol is the double-hydroxylated-form of Vitamin D3 (1,25-dihydroxy-cholecalciferol) that does not require hydroxylation at the hepatic and renal level. The direct substitution may be beneficial in cases of some chronic diseases, but requires close monitoring of calcium levels in the blood while during substitution with cholecalciferol, the synthesis of the required amount is regulated by the system itself. Nevertheless, also substitution with cholecalciferol requires control of serum levels of Vitamin D (154,155). #### Values and Remarks Young KS subjects may have normal BMD in childhood and at the beginning of pubertal development, while the risk of lower bone mass starts at mid puberty when testicular function progressively declines, therefore mitigating the achievement of optimal peak bone mass. Lifestyle interventions (physical activity, smoking, diet, sun exposure), vitamin D and calcium supplementation and specific antiosteoporotic drugs are required based on individual assessments of both BMD and fracture risk (Table 2). Aside from BMD, other microarchitecture features of bone and bone strength have been described in KS using high-resolution peripheral quantitated computed tomography (pQCT) (156,157) that allows better definition of bone structure and strength than DXA (which permits determination of bone density only). No trial has been conducted in patients with KS on testosterone treatment using fractures as primary endpoint. In addition, the effects of anti-osteoporotic drugs on BMD and fracture risk in KS have not been studied. # 4.4.5. Psychological and psychiatric conditions/ Gender incongruence # Recommendations - 38. We recommend considering psychosexual and psychiatric issues in all adult patients with KS and to induce consultation by a specialist if required $(1, \oplus \oplus \bigcirc \bigcirc)$. - 39. We suggest attention to the putative existence of gender incongruence in patients with KS. The patient should then attend a respective specialist within a multidisciplinary setting $(2, \oplus \bigcirc \bigcirc)$. ### Evidence The intellectual ability of KS might be mitigated in some cases, but not generally (125). Characteristic impairments of language skills, such as in verbal processing speed, expressive grammar as well as word retrieval have been reported (127). Patients with KS might have also exhibit impairments in executive functions related to attention, flexibility and planning as well as response inhibition (158). The risks of developing psychiatric conditions, such as schizophrenia, bipolar disorders, depression, anxiety, autism and ADHD are increased in patients with KS (159-163). Psychosexual development is often delayed and sexual problems might be more frequent in KS (164). Most patients identify as male, but gender incongruence in KS has been reported in some studies (72,165-173). ### Values Attention to eventual psychological, sexual, psychiatric as well as gender incongruence aspects is suggested (Table 2). In patients with KS, a personality profile including lower levels of extraversion, insufficient emotional arousal, less openness and higher levels of neuroticism than in general is likely. Intelligence quotient scores are reported to be lower than average (6,159) leading to poor socioeconomic status for many. ### Remarks The neurocognitive phenotype of patients with KS is highly variable. Many studies suffer from selection bias and the current knowledge of these aspects in KS is mainly based upon diagnosed cases. The non-diagnosed cases may present a more neutral phenotype and may not express problems to the same extent as diagnosed patient populations. The presence of various degrees of gender incongruence will have an important impact when testosterone substitution therapy is considered, as in such cases patients with KS may not wish for increased masculinisation (20,165-173) and aim for feminisation. Interdisciplinary work-up with mental health professionals will be mandatory (165-173). Feminising hormone treatment might augment the risk for thrombosis, which is already increased in KS (see above). ## 4.4.6. Risk of neoplasia ### Recommendations 40. We recommend breast examination for patients with KS (including mammary gland ultrasonography if necessary) for detecting gynaecomastia at the first visit and then on an individual basis and eventual treatment as per guidelines $(1, \oplus \oplus \oplus \bigcirc)$. ### Evidence Patients with KS seem to have an increased mortality ratio for all cancers, especially regarding breast and lung cancer as well as non-Hodgkin lymphoma (137,138). The latter pathology exhibited an increased standardized incidence ratio (SIR) of 3.02 in a large cohort of patients with KS (174). Also various forms of leukaemia were found with an SIR 3.62 in this cohort (Ji et al. 2016). Nevertheless, a lower mortality from prostate cancer has been reported (137,138). Other studies demonstrated that patients with KS have an increased risk of breast cancer with a4-30-fold increased incidence compared with that in men with a karyotype of 46,XY (41,135-138,175-177). The mean age of breast cancer in patients with KS is 58 years, which is earlier compared to men with a 46,XY karyotype (67 years) (178). However, given the rarity of male breast cancer, the absolute risk remains low for patients with KS. The calculated cumulative risk of occurrence by the age 75 years is 1% (136-138). Moreover, an increased incidence of extragonadal germ cell neoplasia in patients with KS, most commonly between an age of 15-30 years, has been reported. These tumours are located mainly within the mediastinum and are usually non-seminomas (mature teratomas or mixed tumours) (179). Clinically, younger boys may present precocious puberty due to hCG production, while older patients present with thorax symptoms (180). A relationship between KS and testicular germ cell tumours is not documented (41,135-138,181,182). No cases of testicular germ cell neoplasia in situ (GCNIS) have been shown. The incidence of benign Leydig cell tumours in patients with KS has been reported higher than in the general population, although this may simply reflect a higher prevalence of Leydig cell hyperplasia rather than tumours. In a recent series, the frequency of Leydig cell tumours in KS does not seem higher than that found in infertile men (183,184). ### Values and Remarks Patients with KS have an increased risk of some forms of neoplasia, especially breast cancer and mediastinal germ cell tumours (table 2). Physicians should be aware of the neoplasia risk in patients with KS so as not to lose the opportunity for early detection and treatment. The current epidemiological studies should be interpreted with caution, because of the generally low diagnostic rate of KS and small number of cohort longitudinal studies. ### 4.4.7. Other disorders ## Recommendations - 41. We suggest clinical breast and axilla examinations every two years in adult patients with KS and eventual mammography and/or mammary gland ultrasonography especially in those patients with a family history of breast cancer or other reasons for suspicion thereof $(1, \oplus \oplus \bigcirc \bigcirc)$. - 42. We suggest ophthalmological assessments in patients with KS if the history points towards visual complaints
$(2,\oplus\bigcirc\bigcirc\bigcirc$). - 43. We suggest examination of the dental status in patients with KS $(2, \oplus \bigcirc \bigcirc \bigcirc)$. - 44. We suggest attention to possible autoimmune dysfunctions in patients with KS $(2, \oplus \bigcirc \bigcirc \bigcirc)$ ## Evidence Gynaecomastia has been recognized as part of the cardinal stigmata of KS since its first description (185, 186). More recent studies have found gynaecomastia to be less common in KS, being present in about a third of adults, although prominent or persisting pubertal gynaecomastia remains an important sign of KS (122). Permanent gynaecomastia before and during pubertal transition is a clinical sign that should lead to suspicion of KS and eventual treatment, which should be surgical if required. The pathophysiology of gynaecomastia may be due to unbalanced serum levels of testosterone and estradiol (15), but the length of the CAG repeat polymorphism of the *AR* gene and X-chromosome inactivation status have been also suggested as factors of influence (6,9,142). The exact prevalence of KS among boys and adults with gynaecomastia is unknown, also because gynaecomastia itself is frequently undetected and clinicians often do not suspect KS when addressing gynaecomastia as this is a frequent complaint in adolescents in general. The EAA guideline on gynaecomastia should be consulted (187). There are reports on retinal dysfunction and impaired day vision / night vision in KS (188,189). Development of teeth may be affected, imposing as taurodontism (190) and an increased risk of caries has been reported (191-193). Also autoimmune disorders might be more frequent in KS (194-196), while thyroid functions do not seem to be affected in men with KS (197) ## Values and Remarks Adequate diagnosis and, if required, treatment of gynaecomastia is paramount in KS in order to maintain self-esteem and a positive body image which are essential for patients' mental health. The other conditions mentioned above should be diagnosed and treated, if possible (Table 2). The reports on ophthalmologic, dental and autoimmune diseases are based on small numbers of patients with KS and need validation. ### 5. GENERAL DEMANDS ### Recommendations - 45. We recommend the setup of multidisciplinary centres or structures to care for patients with KS $(1, \oplus \oplus \oplus \bigcirc)$. - 46. We recommend improving the transitional care for patients with KS from pediatric to adult endocrinologists/andrologists $(1,\oplus\oplus\oplus\bigcirc)$. - 47. We recommend improving knowledge about KS among doctors and society, especially by structured graduate and postgraduate education $(1, \oplus \oplus \oplus \bigcirc)$. # Evidence Actual data indicate that 21% of patients with KS are diagnosed prenatally, 10-12% during childhood, 16% at puberty and 51% during adulthood (19,172,198-200). Infants with KS usually present with a normal male phenotype, however KS may be suspected in infants with bilateral cryptorchidism and/or micro-penis (32-34,40,182,201-208). During childhood, speech and behavioural disturbances, excessive growth as compared with parental predicted target height and abnormal body proportions may lead to a suspicion of KS (19). Delayed puberty, poor testicular development, gynaecomastia, excessive height, learning disabilities and psychosocial problems are symptoms that should cause suspicion of KS (20,65,172,204,205,209-212). Nevertheless, early diagnosis is quite rare but the increasing use of prenatal tests will increase the number of patients with KS being diagnosed. This should be an advantage for the patient and a great opportunity to prevent possible associated comorbidities later in life (213-221). However, the empirical evidence that early diagnosis with subsequent intervention improves long-term adult outcomes is currently lacking (222-238). Physicians, especially paediatricians, should be aware of the relatively frequent incidence of KS and also the behavioural issues that might come with it (16,19,91,237). The information on KS and psychological support to the patient and his parents are of great importance for their confidence (222). ### Values and Remarks We put a high value on the recommendations to improve medical knowledge about KS among physicians and society in general (181,201). It is also paramount to provide patients with KS and their parents with specific information and support them psychologically as needed. We also put a high value on the recommendation to the set-up of multidisciplinary centres for the care of patients with KS. These should include all professionals involved (geneticists, paediatricians/paediatric endocrinologists, psychologists, speech therapists, adult endocrinologists/andrologists, urologists, reproductive gynaecologists, sexologists, psychiatrists). EAA centers and other specialized centers within Europe and Accepte worldwide are recommended to serve as multidisciplinary units to be approached by KS patients and their physicians. ## 6. CONCLUSIONS AND FUTURE DIRECTIONS KS is the most common sex chromosomal disorder in men. It affects patients with both hypogonadism and infertility. In addition, men with KS are afflicted with a higher risk of having cardiovascular, metabolic, psychiatric and other comorbidities. Providing the patient with KS and, if deemed adequate, his parents with suitable and balanced information as well as assistance for various aspects of his life after receiving the diagnosis is suggested. Prevention and treatment of the medical complications and comorbidities associated with KS should be standardized as far as possible. Also minimizing neurodevelopmental dysfunction, i.e. verbal deficits, learning difficulties, behavioural problems should be aimed at. These measures are likely to promote the patients' self-esteem, assure quality of life and improve his social adaption. Finally, preservation of the fertility potential, i.e. cryopreservation of spermatozoa from ejaculate or testicular tissue is an option now widelyavailable. The pathological conditions in patients with KS are most likely of a combined endocrine, genetic and epigenetic origin. Further research in a coordinated fashion is needed. KS is vastly underdiagnosed and an increment of general knowledge as well as establishment of standard care in multidisciplinary networks is mandatory. These are the first guidelines to take a step towards this goal. ## **ACKNOWLEDGEMENT; APPROVEMENT AND ENDORSEMENT** The manuscript has been approved by the European Academy of Andrology (EAA) Guidelines Committee members (G. Corona, D.G. Goulis, G. Forti, H.M. Behre, M. Punab, J. Toppari, C. Krausz), Eaa Executive Council (C. Krausz, E. Rajpert-De Meyts, F. Tüttelmann, A.M. Isidori, E. Ruiz-Castane, D. Jezek, Z. Kopa, J. Toppari, M. Simoni), EAA Center Directors and the Co-Editor-in Chief (M.Simoni). In addition, the manuscript has been revised and approved by E. Nieschlag and M. Bonomi on behalf of the European Society of Endocrinology by which it is endorsed. # Legend to Figure 1 Signs and symptoms of Klinefelter Syndrome (KS) at various stages in life. It is indicated that these symptoms may be seen in some or many patients with KS, depending on their age. Most of these symptoms are not inherent to KS and are, therefore, not specific. Small firm testes can, however, be considered quite specific. Also the combination of symptoms in adults can be considered specific and promote the diagnosis of KS. ## Legend to Figure 2a-c ### Figure 2a Testicular histology in an adult patient with Klinefelter Syndrome. The biopsy is dominated by Sertolicell-only tubules, Leydig cell hyperplasia with one large Leydig cell nodule (*) and completely hyalinized "ghost" tubules (white dotted circles). Note two types of Sertoli cell-only seminiferous tubules; type A which contain differentiated Sertoli cells (A), and type B which contain incompletely differentiated Sertoli cells (B). Periodic acid-Schiff staining. The bar denotes 100 μ. Courtesy of Lise Aksglaede ## Figure 2b+c Testicular histology (right testis) of a young adult/adolescent patient (age 18 years) with non-mosaic 47,XXY Klinefelter Syndrome. b: section with various types of tubules, containing elongated spermatids but also a "ghost" tubule c: section with almost intact tubules, containing more elongated spermatids. PAS-staining. The bar denotes 100µ Further patient data: testis volume right: 2.5 ml. LH 6.3 IU/L, FSH 29 IU/L, total testosterone 7.5 nmol/L, Inh B 15.4 pg/mL (normal value: >100 pg/mL), as the lower limit of detection is 10 pg/mL, this finding might indicate remnant processes of spermatogenesis. AMH 2.6 ng/mL (normal range for age 18 y: 1.3-4.8 ng/mL). Courtesy of Sabine Kliesch. Joachim Wistuba and Heidi Kerseboom helped with the histological work up ### **REFERENCES** - 2. 3. 4. 5. 8. 10. - Swiglo BA, Murad MH, Schünemann HJ, et al. A case for clarity, consistency, and helpfulness: state-of-the-art clinical practice guidelines in endocrinology using the grading of recommendations, assessment, development, and evaluation system. J Clin Endocrinol Metab 2008;93:666–673. - 2. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter's syndrome. Lancet 2004;364(9430):273–283. - 3. Tüttelmann F, Gromoll J. Novel genetic aspects of Klinefelter's syndrome. Mol Hum Reprod 2010;16:386–395. - 4. Zitzmann M, Bongers R, Werler S, Bogdanova N, Wistuba J, Kliesch S, Gromoll J, Tüttelmann F. Gene expression patterns in relation to the clinical phenotype in Klinefelter syndrome. J Clin Endocrinol Metab 2015;100:518–523. - Ottesen AM, Aksglaede L, Garn I, Tartaglia N, Tassone F, Gravholt CH, Bojesen A, Sorensen K, Jorgensen N, Rajpert-De ME, Gerdes T, Lind AM, Kjaergaard S, Juul A. Increased number of sex chromosomes affects height in a nonlinear fashion: A study of 305 patients with sex chromosome aneuploidy. Am J Med Genet Part A 2010;152A:1206–1212. - Zitzmann M, Depenbusch M, Gromoll J, Nieschlag
E. X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab 2004;89:6208–6217. - 7. Skakkebaek A, Nielsen MM, Trolle C, Vang S, Hornshøj H, Hedegaard J, Wallentin M, Bojesen A, Hertz JM, Fedder J, Østergaard JR, Pedersen JS, Gravholt CH. DNA hypermethylation and differential gene expression associated with Klinefelter syndrome. Sci Rep 2018;8:13740. - 8. Groth KA, Skakkebæk A, Høst C, Gravholt CH, Bojesen A. Clinical review: Klinefelter syndrome-- a clinical update. J Clin Endocrinol Metab 2013;98:20–30. - 9. Chang S, Skakkebæk A, Trolle C, Bojesen A, Hertz JM, Cohen A, Hougaard DM, Wallentin M, Pedersen AD, Østergaard JR, Gravholt CH. Anthropometry in Klinefelter syndrome-- multifactorial influences due to CAG length, testosterone treatment and possibly intrauterine hypogonadism. J Clin Endocrinol Metab 2015;100:E508–E517. - 10. Busch AS, Tüttelmann F, Zitzmann M, Kliesch S, Gromoll J. The FSHB -211G>T variant attenuates serum FSH levels in the supraphysiological gonadotropin setting of Klinefelter syndrome. Eur J Hum Genet. 2015 May;23(5):700-3. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. - 11. Rocca MS, Pecile V, Cleva L, Speltra E, Selice R, Di Mambro A, Foresta C, Ferlin A. The Klinefelter syndrome is associated with high recurrence of copy number variations on the X chromosome with a potential role in the clinical phenotype. Andrology. 2016 Mar;4(2):328-34. - 12. Maclean N, Harnden DG, Brown WM, Bond J, Mantle DJ. Sexchromosome abnormalities in newborn babies. Lancet 1964;1:286–290. - 13. Hamerton JL, Canning N, Ray M, Smith S. A cytogenetic survey of 14,069 newborn infants. I. Incidence of chromosome abnormalities. Clin Genet 1975;8:223–243. - 14. Nielsen J, Wohlert M. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum Genet 1991;87:81–83. - 15. Bonomi M, Rochira V, Pasquali D, Balercia G, Jannini EA, Ferlin A; Klinefelter ItaliaN Group (KING). Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism. J Endocrinol Invest 2017;40:123–134. - 16. Tartaglia N, Ayari N, Howell S, D'Epagnier C, Zeitler P. 48,XXYY, 48,XXXY and 49,XXXXY syndromes: not just variants of Klinefelter syndrome. Acta Paediatr 2011;100:851–860. - 17. Mazzilli R, Cimadomo D, Rienzi L, Capalbo A, Levi Setti PE, Livi C, Vizziello D, Foresta C, Ferlin A, Ubaldi FM. Prevalence of XXY karyotypes in human blastocysts: multicentre data from 7549 trophectoderm biopsies obtained during preimplantation genetic testing cycles in IVF. Hum Reprod 2018;33:1355–1363. - 18. Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter Syndrome: Integrating Genetics, Neuropsychology, and Endocrinology. Endocr Rev 2018;39:389–423. - 19. Bojesen A, Juul S & Gravholt CH. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab 2003;88:622–626. - 20. Herlihy AS, Halliday JL, Cock ML, McLachlan RI. The prevalence and diagnosis rates of Klinefelter syndrome: an Australian comparison. Med J Aust 2011;194:24–28. - 21. Nieschlag E, Ferlin A, Gravholt CH, Gromoll J, Köhler B, Lejeune H, Rogol AD, Wistuba J. The Klinefelter syndrome: current management and research challenges. Andrology 2016;4:545–549. - 22. Aksglaede L, Garn ID, Hollegaard MV, Hougaard DM, Rajpert-De Meyts E, Juul A. Detection of increased gene copy number in DNA from dried blood spot samples allows efficient screening for Klinefelter syndrome. Acta Paediatr 2012;101:e561-563. - 23. Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol 2017;5:544–553. 24. Ferlin A, Dipresa S, Delbarba A, Maffezzoni F, Porcelli T, Cappelli C, Foresta C. Contemporary genetics-based diagnostics of male Infertility. Expert Rev Mol Diagn 2019;19:623-633. - 25. Aksglaede L, Andersson AM, Jørgensen N, Jensen TK, Carlsen E, McLachlan RI, Skakkebaek NE, Petersen JH, Juul A. Primary testicular failure in Klinefelter's syndrome: the use of bivariate luteinizing hormone-testosterone reference charts. Clin Endocrinol (Oxf) 2007;66:276–281. - 26. Gil MM, Accurti V, Santacruz B, Plana MN & Nicolaides KH. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound ObstetGynecol 2017;50:302-314. - 27. Aksglaede L, Wikström AM, Rajpert-De Meyts E, Dunkel L, Skakkebaek NE, Juul A. Natural history of seminiferous tubule degeneration in Klinefelter syndrome. Hum Reprod Update. 2006 Jan-Feb;12(1):39-48. - 28. Wikstrom AM, Dunkel L. Testicular function in Klinefelter syndrome. Horm Res 2008;69:317–326. - 29. Rey RA, Gottlieb S, Pasqualini T, Bastida MG, Grinspon RP, Campo SM, Bergadá I. Are Klinefelter boys hypogonadal? Acta Paediatr 2011;100:830–838. - 30. Davis SM, Rogol AD, Ross JL. Testis development and fertility potential in boys with Klinefelter syndrome. Endocrinol Metab Clin North Am 2015;44:843–865. - 31. Braye A, Tournaye H, Goossens E. Setting Up a Cryopreservation Programme for Immature Testicular Tissue: Lessons Learned After More Than 15 Years of Experience. Clin Med Insights Reprod Health. 2019 13:1179558119886342. - 32. Ratcliffe SG, Butler GE, Jones M. Edinburgh study of growth and development of children with sex chromosome abnormalities. IV. Birth Defects Orig Artic Ser 1990;26:1–44. - 33. Lahlou N, Fennoy I, Ross JL, Bouvattier C, Roger M. Clinical and hormonal status of infants with nonmosaic XXY karyotype. Acta Paediatr 2011;100:824–829. - 34. Zeger MP, Zinn AR, Lahlou N, Ramos P, Kowal K, Samango-Sprouse C, Ross JL. Effect of ascertainment and genetic features on the phenotype of Klinefelter syndrome. J Pediatr 2008;152:716–722. - 35. Davis S, Howell S, Wilson R, Tanda T, Ross J, Zeitler P & Tartaglia N. Advances in the Interdisciplinary Care of Children with Klinefelter Syndrome. Adv Pediatr 2016;63:15–46. - 36. Tekgül S, Dogan HS, Hoebeke P, Kocvara R, Nijman JM, Radmayr C, Stein R. EAU Guidelines on Paediatric Urology. European Society for Paediatric Urology, European Association of Urology, 2016:12–18. - 37. Wiygul J, Palmer LS. Micro-penis. Sci World J 2001;11:1462–1469. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. - 38. Hatipoğlu N, Kurtoğlu S. Micro-penis: etiology, diagnosis and treatment approaches. J Clin Res Pediatr Endocrinol2013;5:217–223. - 39. Ferlin A, Zuccarello D, Zuccarello B, Chirico MR, Zanon GF, Foresta C. Genetic alterations associated with cryptorchidism. JAMA. 2008;300:2271–2276. - 40. Ratcliffe SH. Development of children with sex chromosome abnormalities. Proc R Soc Med 1976;69:189–191. - 41. Bojesen A, Juul S, Birkebaek NH, Gravholt CH. Morbidity in Klinefelter syndrome: a Danish register study based on hospital discharge diagnoses. J Clin Endocrinol Metab 2006;91:1254–1260. - 42. Ritzén EM, Bergh A, Bjerknes R, Christiansen P, Cortes D, Haugen SE, Jörgensen N, Kollin C, Lindahl S, Läckgren G, Main KM, Nordenskjöld A, Rajpert-De Meyts E, Söder O, Taskinen S, Thorsson A, Thorup J, Toppari J, Virtanen H. Nordic consensus on treatment of undescended testes. Acta Paediatr 2007;96:638–643. - 43. Ragab MW, Cremers JF, Zitzmann M, Nieschlag E, Kliesch S, Rohayem J. A history of undescended testes in young men with Klinefelter syndrome does not reduce the chances for successful microsurgical testicular sperm extraction. Andrology 2018;6:525–531. - 44. Lahlou N, Fennoy I, Carel JC, Roger M. Inhibin B and anti-Mullerian hormone, but not testosterone levels, are normal in infants with nonmosaic Klinefelter syndrome. J Clin Endocrinol Metab 2004;89:1864–1868. - 45. Ross JL, Samango-Sprouse C, Lahlou N, Kowal K, Elder FF, Zinn A. Early androgen deficiency in infants and young boys with 47,XXY Klinefelter syndrome. Horm Res. 2005;64(1):39-45. - 46. Cabrol S, Ross JL, Fennoy I, Bouvattier C, Roger M & Lahlou N. Assessment of Leydig and Sertoli cell functions in infants with nonmosaic Klinefelter syndrome: insulin-like peptide 3 levels are normal and positively correlated with LH levels. JClinEndocrinolMetab 2011;96:E746-E753. - 47. Spaziani M, Granato S, Liberati N, Rossi FM, Tahani N, Pozza C, Gianfrilli D, Papi G, Anzuini A, Lenzi A, Tarani L, Radicioni AF. From mini-puberty to pre-puberty: early impairment of the hypothalamus-pituitary-gonadal axis with normal testicular function in children with non-mosaic Klinefelter syndrome. J Endocrinol Invest. 2020 epub - 48. Topper E, Dickerman Z, Prager-Lewin R, Kaufman H, Maimon Z, Laron Z. Puberty in 24 patients with Klinefelter syndrome. Eur J Pediatr 1982;139:8–12. - 49. Salbenblatt JA, Bender BG, Puck MH, Robinson A, Faiman C, Winter JS. Pituitary gonadal function in Klinefelter syndrome before and during puberty. Pediatr Res 1985;19:82–86. 50. 51. 52. 53. 54. 55. 57. 58. 59. 60. - 50. Christiansen P, Andersson AM, Skakkebaek NE. Longitudinal studies of inhibin B levels in boys and young adults with Klinefelter syndrome. J Clin Endocrinol Metab 2003;88:888–891. - 51. Wikstrom AM, Bay K, Hero M, Andersson AM, Dunkel L. Serum insulin-like f actor 3 levels during puberty in healthy boys and boys with Klinefelter syndrome. J Clin Endocrinol Metab 2006;91:4705–4708. - 52. Wikstrom AM, Dunkel L, Wickman S, Norjavaara E, Ankarberg-Lindgren C, Raivio T. Are adolescent boys with Klinefelter syndrome androgen deficient? A longitudinal study of Finnish 47,XXY boys. Pediatr Res 2006;59:854–859. - 53. Wikstrom AM, Hoei-Hansen CE, Dunkel L, Rajpert-De ME. Immunoexpression of androgen receptor and nine markers of maturation in the testes of adolescent boys with Klinefelter syndrome: Evidence for degeneration of germ cells at the onset of meiosis. J Clin Endocrinol Metab 2006;92:714–719. - 54. Wikstrom AM, Raivio T, Hadziselimovic F, Wikstrom S, Tuuri T & Dunkel L. Klinefelter syndrome in adolescence: onset of puberty is
associated with accelerated germ cell depletion. J Clin Endocrinol Metab 2004;89:2263–2270. - 55. Bastida MG, Rey RA, Bergada I, Bedecarras P, Andreone L, del Rey G, Boywitt A, Ropelato MG, Cassinelli H, Arcari A, Campo S, Gottlieb S. Establishment of testicular endocrine function impairment during childhood and puberty in boys with Klinefelter syndrome. Clin Endocrinol (Oxf) 2007;67:863–870. - 56. Aksglaede L, Jensen RB, Carlsen E, Kok P, Keenan DM, Veldhuis J, Skakkebaek NE, Juul A. Increased basal and pulsatile secretion of FSH and LH in young men with 47,XXY or 46,XX karyotypes. Eur J Endocrinol. 2008 Jun;158(6):803-10 - 57. Aksglaede L, Christiansen P, Sorensen K, Boas M, Linneberg A, Main KM, Andersson AM, Skakkebaek NE, Juul A. Serum concentrations of Anti-Mullerian Hormone (AMH) in 95 patients with Klinefelter syndrome with or without cryptorchidism. Acta Paediatr 2011;100:839–845. - 58. Davis S, Lahlou N, Bardsley M, Temple MC, Kowal K, Pyle L, Zeitler P, Ross J. Gonadal function is associated with cardiometabolic health in pre-pubertal boys with Klinefelter syndrome. Andrology. 2016 Nov;4(6):1169-1177 - 59. Sharma S, Venzac B, Burgers T, Le Gac S, Schlatt S. Microfluidics in male reproduction: is ex vivo culture of primate testis tissue a future strategy for ART or toxicology research? Mol Hum Reprod. 2020 Mar 26;26(3):179-192. - 60. Grumbach MM. A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant. JClinEndocrinolMetab 2005;90:3122–3127. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. - 61. Gurney JK, McGlynn KA, Stanley J, Merriman T, Signal V, Shaw C, Edwards R, Richiardi L, Hutson J, Sarfati D. Risk factors for cryptorchidism. Nat Rev Urol. 2017;14:534–548. - 62. Aksglaede L, Davis SM, Ross JL, Juul A. Minipuberty in Klinefelter syndrome: Current status and future directions. Am J Med Genet C Semin Med Genet. 2020 Jun;184(2):320-326 - 63. Tanner JM, Whitehouse RH, Hughes PC, Car ter BS. Relative importance of growth hormone and sex steroids for the growth at puberty of trunk length, limb length, and muscle width in growth hormone-deficient children. J Pediatr 1976; 89:1000–1008. - 64. Schibler D, Brook CG, Kind HP, Zachmann M, Prader A. Growth and body proportions in 54 boys and men with Klinefelter's syndrome. Helv Paediatr Acta 1974;29:325–333. - 65. Stewart DA, Netley CT, Park E. Summary of clinical findings of children with 47,XXY,47,XYY, and 47,XXX karyotypes. Birth Defects Orig Artic Ser 1982;18:1–5. - 66. Ratcliffe S. Long-term outcome in children of sex chromosome abnormalities. Arch Dis Child 1999;80:192–195. - 67. Aksglaede L, Skakkebaek NE & Juul A Abnormal Sex Chromosome Constitution and Longitudinal Growth: Serum Levels of Insulin-Like Growth Factor (IGF)-I, IGF Binding Protein-3, Luteinizing Hormone, and Testosterone in 109 Males with 47,XXY, 47,XYY, or Sex-Determining Region of the Y Chromosome (SRY)-Positive 46,XX Karyotypes. J Clin Endocrinol Metab 2008;93:169–176. - 68. Zuppinger K, Engel E, Forbes AP, Mantooth L, Claffey J. Klinefelter's syndrome, a clinical and cytogenetic study in twenty four cases. Acta Endocrinol (Copenh) 1967;113:5 - 69. Aksglaede L, Petersen JH, Main KM, Skakkebaek NE & Juul A. High normal testosterone levels in infants with non-mosaic Klinefelter's syndrome. Eur J Endocrinol 2007;157:345–350. - 70. Aksglaede L, Molgaard C, Skakkebaek NE & Juul A. Normal bone mineral content but unfavourable muscle/fat ratio in Klinefelter syndrome. Arch Dis.Child 2008;93 30–34. - 71. Stagi S, Di Tommaso M, Manoni C, Scalini P, Chiarelli F, Verrotti A, Lapi E, Giglio S, Dosa L, de Martino M. Bone mineral status in children and adolescents with Klinefelter syndrome. Int J Endocrinol 2016; 2016:3032759. - 72. Ratcliffe SG. The sexual development of boys with the chromosome constitution 47, XXY (Klinefelter's syndrome). Clin Endocrinol Metab 1982;11:703–716. - 73. Zinn AR, Ramos P, Elder FF, Kowal K, Samango-Sprouse C, Ross JL.Androgen receptor CAGn repeat length influences phenotype of 47,XXY (Klinefelter) syndrome. J Clin Endocrinol Metab. 2005 Sep;90(9):5041-6 76. 77. 78. 79. 80. 81. 82. 83. 85. - 74. Bojesen A, Hertz JM, Gravholt CH. Genotype and phenotype in Klinefelter syndrome impact of androgen receptor polymorphism and skewed X inactivation. Int J Androl. 2011 Dec;34(6 Pt 2):e642-8. - 75. Bojesen A, Birkebæk N, Kristensen K, Heickendorff L, Mosekilde L, Christiansen JS, Gravholt CH. Bone mineral density in Klinefelter syndrome is reduced and primarily determined by muscle strength and resorptive markers, but not directly by testosterone. Osteoporos Int 2011;22:1441–1450. - 76. Gravholt CH, Jensen AS, Høst C, Bojesen A. Body composition, metabolic syndrome and type 2 diabetes in Klinefelter syndrome. Acta Paediatr 2011;100:871–877. - 77. Samango-Sprouse C, Stapleton EJ, Lawson P, Mitchell F, Sadeghin T, Powell S, Gropman AL. Positive effects of early androgen therapy on the behavioral phenotype of boys with 47,XXY. Am J Med Genet C Semin Med Genet 2015;169:150–157. - 78. Samango-Sprouse CA, Sadeghin T, Mitchell FL, Dixon T, Stapleton E, Kingery M, Gropman AL. Positive effects of short course androgen therapy on the neurodevelopmental outcome in boys with 47, XXY syndrome at 36 and 72 months of age. Am J Med Genet A 2013;161:501–508. - 79. Davis SM, Reynolds RM, Dabelea DM, Zeitler PS, Tartaglia NR. Testosterone Treatment in Infants With 47,XXY: Effects on Body Composition. J Endocr Soc. 2019 Sep 26;3(12):2276-2285 - 80. Davis SM, Cox-Martin MG, Bardsley MZ, Kowal K, Zeitler PS & Ross JL. Effects of Oxandrolone on Cardiometabolic Health in Boys With Klinefelter Syndrome: A Randomized Controlled Trial. J ClinEndocrinolMetab 2017;102:176–184. - 81. Davis SM, Lahlou N, Cox-Martin M, Kowal K, Zeitler PS, Ross JL. Oxandrolone Treatment Results in an Increased Risk of Gonadarche in Prepubertal Boys With Klinefelter Syndrome. J Clin Endocrinol Metab. 2018 Sep 1;103(9):3449-3455 - 82. Ross JL, Kushner H, Kowal K, Bardsley M, Davis S, Reiss AL, Tartaglia N & Roeltgen D. Androgen Treatment Effects on Motor Function, Cognition, and Behavior in Boys with Klinefelter Syndrome. J Pediatr 2017;185:193–199. - 83. Van Rijn S, Aleman A, Swaab H, Krijn T, Vingerhoets G, Kahn R. What it is said versus how it is said: Comprehension of affective prosody in men with Klinefelter (47,XXY) syndrome. J Int Neuropsychol Soc 2007;13:1065–1070. - 84. Cohen FL, Durham JD. Klinefelter syndrome. J Psychosoc Nurs Ment Health Serv 1985;23:19–25. - 85. Nielsen J, Pelsen B. Follow-up 20 years later of 34 Klinefelter males with karyotype 47,XXY and 16 hypogonadal males with karyotype 46,XY. Hum Genet 1987;77:188–192. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 98. - 86. Nielsen J. Follow-up of 25 unselected children with sex chromosome abnormalities to age 12. Birth Defects Orig Artic Ser 1990;26: 201–207. - 87. Sorensen K. Physical and mental development of adolescent males with Klinefelter syndrome. Horm Res 1992; 37:55–61. - 88. Rovet J, Netley C, Bailey J, Keenan M, Stewart D. Intelligence and achievement in children with extra X aneuploidy: A longitudinal perspective. Am J Med Genet Part A 1995;60A:356–363. - 89. Rovet J, Netley C, Keenan M, Bailey J, Stewart D. The psychoeducational profile of boys with Klinefelter syndrome. J Learn Disabil 1996;29:180–196. - 90. Ross JL, Roeltgen DP, Stefanatos G, Benecke R, Zeger MP, Kushner H, Ramos P, Elder FF, Zinn AR. Cognitive and motor development during childhood in boys with Klinefelter syndrome. Am J Med Genet Part A 2008;146A:708–719. - 91. Ross JL, Zeger MP, Kushner H, Zinn AR, Roeltgen DP. An extra X or Y chromosome: contrasting the cognitive and motor phenotypes in childhood in boys with 47,XYY syndrome or 47,XXY Klinefelter syndrome. Dev Disabil Res Rev 2009;15:309–317. - 92. Girardin CM, Lemyre E, Alos N, Deal C, Huot C, Van VG. Comparison of adolescents with Klinefelter syndrome according to the circumstances of diagnosis: Amniocentesis versus clinical signs. Horm Res 2009;72:98–105. - 93. Samango-Sprouse C, Stapleton E, Chea S, Lawson P, Sadeghin T, Cappello C, de Sonneville L, van Rijn S. International investigation of neurocognitive and behavioral phenotype in 47,XXY (Klinefelter syndrome): Predicting individual differences. Am J Med Genet A. 2018 Apr;176(4):877-885. - 94. van Rijn S, de Sonneville L, Swaab H.The nature of social cognitive deficits in children and adults with Klinefelter syndrome (47,XXY). Genes Brain Behav. 2018 Jul;17(6):e12465. - 95. van Rijn S. Salivary testosterone in relation to social cognition and social anxiety in children and adolescents with 47,XXY (Klinefelter syndrome). PLoS One. 2018 Jul 23;13(7):e0200882. - 96. van Rijn S. Social Attention in 47,XXY (Klinefelter Syndrome): Visual Scanning of Facial Expressions Using Eyetracking. J Int Neuropsychol Soc. 2015 May;21(5):364-72 - 97. van Rijn S, Barneveld P, Descheemaeker MJ, Giltay J, Swaab H The effect of early life stress on the cognitive phenotype of children with an extra X chromosome (47,XXY/47,XXX). Child Neuropsychol. 2018 Feb;24(2):277-286 - 98. van Rijn S, Aleman A, Swaab H, Kahn R. Klinefelter's syndrome (karyotype 47,XXY) and schizophrenia-spectrum pathology. Br J Psychiatry. 2006 Nov;189:459-60 - 99. Miers AC, Ziermans T, van Rijn S. Connecting the Dots between Schizotypal Symptoms and Social Anxiety in Youth with an Extra X Chromosome: A Mediating Role for Catastrophizing. Brain Sci. 2017 Sep 6;7(9):113 - 100. Money J, Annecillo C, Van Orman B, et al. Cytogenetics, hormones and behavior disability: comparison of XYY and XXY syndromes. Clin Genet 1974;6:370–382. - 101. Walzer S, Bashir AS, Silbert AR. Cognitive and behavioral factors in the learning disabilities of 47,XXY and 47,XYY boys. Birth Defects Orig Artic Ser 1990;26:45–58. - 102. Fennoy I. Testosterone and the child (0–12 years) with Klinefelter syndrome (47XXY): a review. Acta Paediatr 2011;100:846–850. - 103. Mason KA, Schoelwer MJ, Rogol AD. Androgens During
Infancy, Childhood, and Adolescence: Physiology and Use in Clinical Practice. Endocr Rev. 2020 Jun 1;41(3). - 104. Rohayem J, Nieschlag E, Zitzmann M, Kliesch S. Testicular function during puberty and young adulthood in patients with Klinefelter's syndrome with and without spermatozoa in seminal fluid. Andrology 2016;4:1178–1186. - 105. Plotton I, Giscard d'Estaing S, Cuzin B, Brosse A, Benchaib M, Lornage J, Ecochard R, Dijoud F, Lejeune H; FERTIPRESERVE group. Preliminary results of a prospective study of testicular sperm extraction in young versus adult patients with nonmosaic 47,XXY Klinefelter syndrome. J Clin Endocrinol Metab 2015;100:961–967. - 106. Rohayem J, Fricke R, Czeloth K, Mallidis C, Wistuba J, Krallmann C, Zitzmann M, Kliesch S. Age and markers of Leydig cell function, but not of Sertoli cell function predict the success of sperm retrieval in adolescents and adults with Klinefelter's syndrome. Andrology 2015;3:868–875. - 107. Franik S, Hoeijmakers Y, D'Hauwers K, Braat DD, Nelen WL, Smeets D, Claahsen-van der Grinten HL, Ramos L, Fleischer K. Klinefelter syndrome and fertility: sperm preservation should not offered to children with Klinefelter syndrome. Hum Reprod 2016;31:1952–1959. - 108. Slowikowska-Hilczer J, Hirschberg AL, Claahsen-van der Grinten H, Reisch N, Bouvattier C, Thyen U, Cohen Kettenis P, Roehle R, Köhler B, Nordenström A; dsd-LIFE Group. Fertility outcome and information on fertility issues in individuals with different forms of disorders of sex development: findings from the dsd-LIFE study. Fertil Steril 2017;108:822–831. - 109. Aksglaede L, Jørgensen N, Skakkebaek NE, Juul A. Low semen volume in 47 adolescents and adults with 47,XXY Klinefelter or 46,XX male syndrome. Int J Androl 2008b;32:376–384. - 110. Pacenza N, Pasqualini T, Gottlieb S, Knoblovits P, Costanzo PR, Stewart Usher J, Rey RA, Martínez MP, Aszpis S. Clinical Presentation of Klinefelter's Syndrome: Differences According to Age. Int J Endocrinol 2012;2012:324835. 111. Aksglaede L, Skakkebaek NE, Almstrup K & Juul A. Clinical and biological parameters in 166 boys, adolescents and adults with nonmosaic Klinefelter syndrome: a Copenhagen experience. Acta Paediatr 2011;100:793–806. - 112. Aksglaede L, Sorensen K, Boas M, Mouritsen A, Hagen CP, Jensen RB, Petersen JH, Linneberg A, Andersson AM, Main KM, Skakkebaek NE, Juul A. Changes in anti-Mullerian hormone (AMH) throughout the life span: A population-based study of 1027 healthy males from birth (cord blood) to the age of 69 years. J Clin Endocrinol Metab 2010;95:5357–5364. - 113. Kamischke A, Baumgardt A, Horst J, Nieschlag E. Clinical and diagnostic features of patients with suspected Klinefelter syndrome. J Androl 2003;24:41–48. - 114. Forti G, Giusti G, Borghi A, Pazzagli M, Fiorelli G, Cabresi E, Mannelli M, Bassi F, Giannotti P, Fusi S, Serio M. Klinefelter's syndrome: a study of its hormonal plasma pattern. J Endocrinol Invest 1978;1:149–154. - 115. Sorensen K, Aksglaede L, Petersen JH, Juul A. Recent changes in pubertal timing in healthy Danish boys: associations with body mass index. J Clin Endocrinol Metab. 2010 Jan;95(1):263-70. - 116. Simm PJ, Zacharin MR: The psychosocial impact of Klinefelter syndrome—a 10-year review. J Ped Endrocrinol Metab 2006;19:499–505. - 117. Rogol AD, Tartaglia N. Considerations for androgen therapy in children and adolescents with Klinefelter syndrome (47, XXY). Pediatr Endocrinol Rev 2010;8(Suppl 1):145–150. - 118. Forti G, Corona G, Vignozzi L, Krausz C, Maggi M. Klinefelter's syndrome: a clinical and therapeutic update. Sex Dev 2010;4:249–258. - 119. Mehta A, Clearman T, Paduch DA. Safety and efficacy of testosterone replacement therapy in adolescents with Klinefelter syndrome. J Urol. 2014 May;191(5 Suppl):1527-31. - 120. Mehta A, Paduch DA. Klinefelter syndrome: an argument for early aggressive hormonal and fertility management. Fertil Steril. 2012 Aug;98(2):274-83 - 121. Wosnitzer MS, Paduch DA. Endocrine issues and hormonal manipulation in children and men with Klinefelter syndrome. Am J Med Genet C Semin Med Genet 2013;163C:16–26. - 122. Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter Syndrome: Integrating Genetics, Neuropsychology, and Endocrinology. Endocr Rev. 2018 Aug 1;39(4):389-423 - 123. Bender BG, Linden MG, Robinson A. Neuropsychological impairment in 42 adolescents with sex chromosome abnormalities. Am J Med Genet 1993;48:169–173. - 124. Bender BG, Linden MG, Robinson A: Verbal and spatial processing efficiency in 32 children with sex chromosome abnormalities. Pediatr Res 1989;25:577–579. 125. Boada R, Janusz J, Hutaff-Lee C, Tartaglia N: The cognitive phenotype in Klinefelter syndrome: a review of the literature including genetic and hormonal factors. Dev Disabil Res Rev 2009;15:284–294. - 126. Bojesen A, Stochholm K, Juul S, Gravholt CH. Socioeconomic trajectories affect mortality in Klinefelter syndrome. J Clin Endocrinol Metab 2011;96:2098–2104. - 127. Bruining H, Swaab H, Kas M, van Engeland H. Psychiatric characteristics in a self-selected sample of boys with Klinefelter syndrome. Pediatrics 2009;123:e865–e870. - 128. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, Snyder PJ, Swerdloff RS, Wu FC, Yialamas MA. Testosterone Therapy in Men With Hypogonadism: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2018;103:1715-1744 - 129. Pizzocaro A, Vena W, Condorelli R, Radicioni A, Rastrelli G, Pasquali D, Selice R, Ferlin A, Foresta C, Jannini EA, Maggi M, Lenzi A, Pivonello R, Isidori AM, Garolla A, Francavilla S, Corona G; King, Klinefelter ItaliaN Group. Testosterone treatment in male patients with Klinefelter syndrome: a systematic review and meta-analysis. J Endocrinol Invest. 2020 epub - 130. Corona G, Pizzocaro A, Lanfranco F, Garolla A, Pelliccione F, Vignozzi L, Ferlin A, Foresta C, Jannini EA, Maggi M, Lenzi A, Pasquali D, Francavilla S; Klinefelter ItaliaN Group (KING). Sperm recovery and ICSI outcomes in Klinefelter syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2017 May 1;23(3):265-275 - 131. Corona G, Minhas S, Giwercman A, Bettocchi C, Dinkelman-Smit M, Dohle G, Fusco F, Kadioglou A, Kliesch S, Kopa Z, Krausz C, Pelliccione F, Pizzocaro A, Rassweiler J, Verze P, Vignozzi L, Weidner W, Maggi M, Sofikitis N. Sperm recovery and ICSI outcomes in men with non-obstructive azoospermia: a systematic review and meta-analysis. Hum Reprod Update. 2019 Nov 5;25(6):733-757. - Bhasin S, Oates RD Fertility Considerations in Adolescent Klinefelter Syndrome: Current Practice Patterns. J Clin Endocrinol Metab 2020 Apr 1;105(4):e1918-e1920. - 133. Zganjar A, Nangia A, Sokol R, Ryabets A, Samplaski MK. Fertility in Adolescents with Klinefelter Syndrome: A Survey of Current Clinical Practice. J Clin Endocrinol Metab. 2019 Oct 14 [Epub ahead of print]. - 134. Deebel NA, Galdon G, Zarandi NP, Stogner-Underwood K, Howards S, Lovato J, Kogan S, Atala A, Lue Y, Sadri-Ardekani H. Age-related presence of spermatogonia in patients with Klinefelter syndrome: a systematic review and meta-analysis. Hum Reprod Update 2020;26:58–72. - 135. Bojesen A, Juul S, Birkebaek N, Gravholt CH. Increased mortality in Klinefelter syndrome. J Clin Endocrinol Metab 2004;89:3830–3834. 136. Swerdlow AJ, Hermon C, Jacobs PA, Alberman E, Beral V, Daker M, Fordyce A, Youings S. Mortality and cancer incidence in persons with numerical sex chromosome abnormalities: a cohort study. Ann Hum Genet 2001; 65:177-88. - 137. Swerdlow AJ, Higgins CD, Schoemaker MJ, Wright AF, Jacobs PA, et al: Mortality in patients with Klinefelter syndrome in Britain: a cohort study. J Clin Endocrinol Metab 2005; 90: 6516–6522. - 138. Swerdlow AJ, Schoemaker MJ, Higgins CD, Wright AF, Jacobs PA. UK Clinical Cytogenetics Group. Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. J Natl Cancer Inst 2005; 97: 1204–10. - 139. Salzano A, Arcopinto M, Marra AM, Bobbio E, Esposito D, Accardo G, Giallauria F, Bossone E, Vigorito C, Lenzi A, Pasquali D, Isidori AM, Cittadini A. Klinefelter syndrome, cardiovascular system, and thromboembolic disease: review of literature and clinical perspectives. Eur J Endocrinol. 2016;175:R27–40. - 140. Chang S, Skakkebaek A, Davis SM, Gravholt CH. Morbidity in Klinefelter syndrome and the effect of testosterone treatment. Am J Med Genet C Semin Med Genet. 2020 Jun;184(2):344-355 - 141. Bojesen A, Høst C, Gravholt CH. Klinefelter's syndrome, type 2 diabetes and the metabolic syndrome: the impact of body composition. Mol Hum Reprod 2010;16:396–401. - 142. Chang S, Skakkebæk A, Gravholt CH. Klinefelter Syndrome and medical treatment: hypogonadism and beyond. Hormones (Athens) 2015;14:531–548. - 143. Jørgensen IN, Skakkebaek A, Andersen NH, Pedersen LN, Hougaard DM, Bojesen A, Trolle C, Gravholt CH. Short QTc interval in males with klinefelter syndrome-influence of CAG repeat length, body composition, and testosterone replacement therapy. Pacing Clin Electrophysiol 2015;38:472–482. - 144. Zoller B, Ji J, Sundquist J, Sundquist K. High risk of venous thromboembolism in Klinefelter syndrome. J Am Heart Assoc 2016;5:e003567. - 145. Chang S, Biltoft D, Skakkebæk A, Fedder J, Bojesen A, Bor MV, Gravholt CH, Münster AB. Testosterone treatment and association with thrombin generation and coagulation inhibition in Klinefelter syndrome: A cross-sectional study. Thromb Res 2019;182:175–181. - 146. Chang S, Christiansen CF, Bojesen A, Juul S, Münster AB, Gravholt CH. Klinefelter syndrome and testosterone treatment: a national cohort study on thrombosis risk. Endocr Connect. 2019 Dec 1. pii: EC-19-0433.R1. - 147. Rochira V, Antonio L, Vanderschueren D. EAA clinical guideline on management of bone health in the andrological outpatient clinic. Andrology 2018;6:272–285. 148. Ferlin A, Schipilliti M, Di Mambro A, Vinanzi C, Foresta C. Osteoporosis in Klinefelter's syndrome. Mol Hum Reprod 2010;16:402–410. - 149. Ferlin A, Schipilliti
M, Foresta C. Bone density and risk of osteoporosis in Klinefelter syndrome. Acta Paediatr. 2011;100:878–884. - 150. Ferlin A, Selice R, Di Mambro A, Ghezzi M, Di Nisio A, Caretta N, Foresta C. Role of vitamin D levels and vitamin D supplementation on bone mineral density in Klinefelter syndrome. Osteoporosis Int 2015;26:2193–2202. - 151. Zitzmann M, Brune M, Vieth V, Nieschlag E. Monitoring bone density in hypogonadal men by quantitative phalangeal ultrasound. Bone 2002;31:422–429. - 152. Overvad S, Bay K, Bojesen A, Gravholt CH. Low INSL3 in Klinefelter syndrome is related to osteocalcin, testosterone treatment and body composition, as well as measures of the hypothalamic-pituitary-gonadal axis. Andrology. 2014;2:421–427. - 153. Di Nisio A, De Toni L, Rocca MS, Ghezzi M, Selice R, Taglialavoro G, Ferlin A, Foresta C. Negative Association Between Sclerostin and INSL3 in Isolated Human Osteocytes and in Klinefelter Syndrome: New Hints for Testis-Bone Crosstalk. J Clin Endocrinol Metab 2018;103:2033-2041. - 154. Holick MF. Vitamin D deficiency. N Engl J Med. 2007 Jul 19;357(3):266-81 - 155. Shanbhogue VV, Hansen S, Jørgensen NR, Brixen K, Gravholt CH. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in Klinefelter syndrome. J Bone Miner Res 2014;29:2474–2482. - 156. Stepan JJ, Burckhardt P, Hána V. The effects of three-month intravenous ibandronate on bone mineral density and bone remodeling in Klinefelter's syndrome: the influence of vitamin D deficiency and hormonal status. Bone 2003;33:589–596. - 157. Tahani N, Nieddu L, Prossomariti G, Spaziani M, Granato S, Carlomagno F, Anzuini A, Lenzi A, Radicioni AF, Romagnoli E. Long-term effect of testosterone replacement therapy on bone in hypogonadal men with Klinefelter Syndrome. Endocrine 2018;61:327–335. - 158. Skakkebaek A, Bojesen A, Kristensen MK, Cohen A, Hougaard DM, Hertz JM, Fedder J, Laurberg P, Wallentin M, Østergaard JR, Pedersen AD, Gravholt CH. Neuropsychology and brain morphology in Klinefelter syndrome the impact of genetics. Andrology 2014;2:632–640. - 159. Skakkebæk A, Moore PJ, Pedersen AD, Bojesen A, Kristensen MK, Fedder J, Hertz JM, Østergaard JR, Wallentin M, Gravholt CH. Anxiety and depression in Klinefelter syndrome: The impact of personality and social engagement. PLoS One 2018;9;13:e0206932. 160. Cederlöf M1,Ohlsson Gotby A, Larsson H, Serlachius E, Boman M, Långström N, Landén M, Lichtenstein P. Klinefelter syndrome and risk of psychosis, autism and ADHD. J Psychiatr Res 2014;48:128–130. - 161. van Rijn S, Swaab H. Emotion regulation in adults with Klinefelter syndrome (47,XXY): Neurocognitive underpinnings and associations with mental health problems. J Clin Psychol. 2020 Jan;76(1):228-238 - 162. Skakkebaek A, Gravholt CH, Chang S, Moore PJ, Wallentin M. Psychological functioning, brain morphology, and functional neuroimaging in Klinefelter syndrome. Am J Med Genet C Semin Med Genet. 2020 Jun;184(2):506-517 - 163. Fjermestad KW, Huster R, Thunberg C, Stokke S, Gravholt CH, Solbakk AK. Neuropsychological functions, sleep, and mental health in adults with Klinefelter syndrome. Am J Med Genet C Semin Med Genet. 2020 Jun;184(2):482-492 - 164. Ferlin A, Selice R, Angelini S, Di Grazia M, Caretta N, Cavalieri F, Di Mambro A, Foresta C. Endocrine and psychological aspects of sexual dysfunction in Klinefelter patients. Andrology. 2018 May;6(3):414-419. - 165. Seifert D, Windgassen K. Transsexual development of a patient with Klinefelter's syndrome. Psychopathology 1995;28:312–316. - 166. Davies GW, Parkinson J. Gender dysphoria in Klinefelter's syndrome: three cases. Australas Psychiatry 2018; 26:313-314. - 167. Verri A, Cremante A, Clerici F, Destefani V, Radicioni A. Klinefelter's syndrome and psychoneurologic function. Mol Hum Reprod 2010;16:425–433. - 168. Auer MK, Fuss J, Stalla GK, Athanasoulia AP. Twenty years of endocrinologic treatment in transsexualism: analyzing the role of chromosomal analysis and hormonal profiling in the diagnostic work-up. Fertil Steril. 2013 Oct;100(4):1103-10. - 169. Fisher AD, Castelline G, Casale H, Fanni E, Bandini E. et al. Hypersexuality, paraphylic behaviors, and gender dysphoria in individuals with Klinefelter's syndrome. J Sex Med 2015;12:2413–2424. - 170. Herlihy AS, Gillam L. Thinking outside the square: considering gender in Klinefelter syndrome and 47, XXY. Int JAndrol 2011;34:e348-e349. - 171. Herlihy AS, McLachlan RI, Gillam L, Cock ML, Collins V, Halliday JL. The psychosocial impact of Klinefelter syndrome and factors influencing quality of life. Genet Med 201;13:632–642. - 172. Herlihy AS, McLachlan RI. Screening for Klinefelter syndrome. Curr Opin Endocrinol Diabetes Obes 2015;22:224–229. 173. Inoubli A, De Cuypere G, Rubens R, Heylens G, Elaut E, Van Caenegem E, Menten B, T'Sjoen G. Karyotyping, is it worthwile in transsexualism? J Sex Med 2011;8:475–478. - 174. Ji J, Zöller B, Sundquist J, Sundquist K. Risk of solid tumors and hematological malignancy in persons with Turner and Klinefelter syndromes: a national cohort study. Int J Cancer 2016;139:754–758. - 175. Sasco AJ, Lowenfels AB, Pasker-de JP. Review article: epidemiology of male breast cancer. A meta-analysis of published case-control studies and discussion of selected aetiological factors. Int J Cancer. 1993; 53:538-549. - 176. Gomez-Raposo C, Zambrana Tevar F, Sereno Moyano M, Lopez Gomez M, Casado E. Male breast cancer. Cancer Treat Rev. 2010;36:451-457. - 177. Brinton LA. Breast cancer risk among patients with Klinefelter syndrome. Acta Paediatr 2011; 100:814-818. - 178. Giordano SH, Buzdar AU, Hortobagyi GN. Breast cancer in men. Ann Intern Med. 2002;137:678-687. - 179. Vokl TMK, Langer T, Aigner T, Greess H, Beck JD, Rauch AM, et al. Klinefelter syndrome and mediastinal germ cell tumors. Am J Med Genet A 2006; 140:471–81. - 180. Nichols CR, Heerema NA, Palmer C, et al. Klinefelter's syndrome associated with mediastinal germ cell neoplasms. J Clin Oncol 1987;5:1290-1294. - 181. Simpson JL, de la Cruz F, Swerdloff RS, Samango-Sprouse C, Skakkebaek NE, Graham JM Jr, et al. Klinefelter syndrome: expanding the phenotype and identifying new research directions. Genet Med 2003; 5:460–8. - 182. Foresta C, Zuccarello D, Garolla A, Ferlin A. Role of hormones, genes, and environment in human cryptorchidism. Endocr Rev 2008;29:560–580. - 183. Giudice MG, Vermeulen M, Wyns C. Blood Testis Barrier and Somatic Cells Impairment in a Series of 35 Adult Klinefelter Syndrome Patients. Int J Mol Sci. 2019 Nov 14;20(22):5717 - 184. Pozza C, Pofi R, Tenuta M, Tarsitano MG, Sbardella E, Fattorini G, Cantisani V, Lenzi A, Isidori AM, Gianfrilli D; TESTIS UNIT.Clinical presentation, management and follow-up of 83 patients with Leydig cell tumors of the testis: a prospective case-cohort study. Hum Reprod. 2019 Aug 1;34(8):1389-1403 - 185. Klinefelter HFRE, Albright F. Syndrome characterized by gynaecomastia, spermatogenesis without A-Leydigism, and increased excretion of follicle stimulating hormone. J Clin Endocrinol 1942;2:615–627. This article is protected by copyright. All rights reserved 186. Jacobs PA, Strong JA. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 1959;183:302–303. - 187. Kanakis GA, Nordkap L, Bang AK, Calogero AE, Bártfai G, Corona G, Forti G, Toppari J, Goulis DG, Jørgensen N. EAA clinical practice guidelines-gynecomastia evaluation and management. Andrology. 2019 7:778-793 - 188. Brand C, Zitzmann M, Eter N, Kliesch S, Wistuba J, Alnawaiseh M, Heiduschka P. Aberrant ocular architecture and function in patients with Klinefelter syndrome. Sci Rep 2017;7:13130. - 189. Karampelas M, Gardner J, Holder G, Hardcastle A, Webster A. Retinal dysfunction and high myopia in association with 48,XXYY syndrome. Doc Ophthalmol 2013;127:245–247. - 190. Giambersio E, Barile V, Giambersio AM. Klinefelter's syndrome and taurodontism. Arch Ital Urol Androl 2019;91:000–000. - 191. Jørgensen IF, Russo F, Jensen AB, Westergaard D, Lademann M, Hu JX, Brunak S, Belling K. Comorbidity landscape of the Danish patient population affected by chromosome abnormalities. Genet Med. 2019 Nov;21(11):2485-2495. - 192. Belling K, Russo F, Jensen AB, Dalgaard MD, Westergaard D, Rajpert-De Meyts E, Skakkebæk NE, Juul A, Brunak S. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity. Hum Mol Genet. 2017 Apr 1;26(7):1219-1229. - 193. Palin-Palokas T, Alvesalo L, Takala I, Paunio K, Suoranta K, Varrela J. Caries occurrence in Klinefelter syndrome men (47,XXY males). Proc Finn Dent Soc. 1990;86(3-4):143-7. - 194. Seminog OO, Seminog AB, Yeates D, Goldacre MJ. Associations between Klinefelter's syndrome and autoimmune diseases: English national record linkage studies. Autoimmunity. 2015 Mar;48(2):125-8. - 195. Sawalha AH, Harley JB, Scofield RH. Autoimmunity and Klinefelter's syndrome: when men have two X chromosomes. J Autoimmun. 2009 Aug;33(1):31-4. - 196. Panimolle F, Tiberti C, Granato S, Anzuini A, Pozza C, Lenzi A, Radicioni AF. Evidence of increased humoral endocrine organ-specific autoimmunity in severe and classic X-chromosome aneuploidies in comparison with 46,XY control subjects. Autoimmunity 2018;51:175–182. - 197. Balercia G, Bonomi M, Giagulli VA, Lanfranco F, Rochira V, Giambersio A, Accardo G, Esposito D, Allasia S, Cangiano B, De Vincentis S, Condorelli RA, Calogero A, Pasquali D; KING group. Thyroid function in Klinefelter syndrome: a multicentre study from KING group. J Endocrinol Invest 2019;42:1199–1204 198. Nicolaides KH, Syngelaki A, Ashoor G, Birdir C, Touzet G. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am J Obstet Gynecol 2012;207:374.e1-6. - 199. Norton ME, Jelliffe-Pawlowski LL, Currier RJ. Chromosome abnormalities detected by current prenatal screening and noninvasive prenatal testing. Obstet Gynecol2014;124:979–986. - 200.
Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM, Ehrich M, van den Boom D, Bombard AT, Deciu C, Grody WW, Nelson SF, Canick JA. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med2011;13:913–920. - 201. Foresta C, Ferlin A, Gianaroli L, Dallapiccola B. Guidelines for the appropriate use of genetic tests in infertile couples. Eur J Hum Genet 2002;10:303–312. - 202. Samango-Sprouse C, Banjevic M, Ryan A, Sigurjonsson S, Zimmermann B, Hill M, Hall MP, Westemeyer M, Saucier J, Demko Z, Rabinowitz M. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy. Prenat Diagn2013;33:643–649. - 203. Paris F, Gaspari L, Mbou F, Philibert P, Audran F, Morel Y, Biason-Lauber A, Sultan C. Endocrine and molecular investigations in a cohort of 25 adolescent males with prominent/persistent pubertal gynaecomastia. Andrology 2016;4:263–269. - 204. Radicioni AF, De Marco E, Gianfrilli D, Granato S, Gandini L, Isidori AM, Lenzi A. Strategies and advantages of early diagnosis in Klinefelter's syndrome. Mol Hum Reprod 2010;16:434–440. - 205. Radicioni AF, Ferlin A, Balercia G, Pasquali D, Vignozzi L, Maggi M, Foresta C, Lenzi A. Consensus statement on diagnosis and clinical management of Klinefelter syndrome. J Endocrinol Invest 2010;33:839–850. - 206. Rao E, Weiss B, Fukami M, Mertz A, Meder J, Ogata T, Heinrich U, Garcia-Heras J, Schiebel K, Rappold GA. FISH-deletion mapping defines a 270-kb short stature critical interval in the pseudoautosomal region PAR1 on human sex chromosomes. Hum Genet 1997a;100:236–239. - 207. Rao E, Weiss B, Fukami M, Rump A, Niesler B, Mertz A, Muroya K, Binder G, Kirsch S, Winkelmann M, Nordsiek G, Heinrich U, Breuning MH, Ranke MB, Rosenthal A, Ogata T, Rappold GA. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet 1997b;16:54–63. - 208. Tüttelmann F, Damm OS, Luetjens CM, Baldi M, Zitzmann M, Kliesch S, Nieschlag E, Gromoll J, Wistuba J, Simoni M. Intratesticular testosterone is increased in men with Klinefelter syndrome and may not be released into the bloodstream owing to altered testicular vascularization— a preliminary report. Andrology 2014;2:275–281. 209. Stewart JS, Mack WS, Govan AD, Ferguson-Smith MA, Lennox B. Klinefelter's syndrome: Clinical and hormonal aspects. Q J Med 1959;28:561–571. - 210. Messina MF, Sgrò DL, Aversa T, Pecoraro M, Valenzise M, De Luca F. A characteristic cognitive and behavioral pattern as clue to suspect Klinefelter syndrome in pre-pubertal age. J Am Board Fam Med2012;25:745–749. - 211. Vorona E, Zitzmann M, Gromoll J, Schüring AN, Nieschlag E. Clinical, endocrine, and epigenetic features of the 46,XX male syndrome, compared with 47,XXY Klinefelter patients. J Clin Endocrinol Metab 2007;92:3458–3465. - 212. Wade CH, Wilfond BS, McBride CM. Effects of genetic risk information on children's psychosocial wellbeing: a systematic review of the literature. Genet Med 2010;12:317–326. - 213. Host C, Bojesen A, Erlandsen M, Groth K, Kritstensen K, Jurik AG, Birkebæk N, Gravholt C. A placebo-controlled randomized study with testosterone in Klinefelter syndrome beneficial effects on body composition. Endocr Connect 2019. pii: EC-19-0323.R1. - 214. Bardsley MZ, Falkner B, Kowal K & Ross JL. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr 2011;100 866–870. - 215. Corona G, Rastrelli G, Di Pasquale G, Sforza A, Mannucci E, Maggi M. Endogenous Testosterone Levels and Cardiovascular Risk: Meta-Analysis of Observational Studies. J Sex Med. 2018 Sep;15(9):1260-1271 - 216. Di Minno MN, Esposito D, Di Minno A, Accardo G, Lupoli G, Cittadini A, Giugliano D, Pasquali D. Increased platelet reactivity in Klinefelter men: something new to consider. Andrology 2015;3:876–881. - 217. Rives N, Milazzo JP, Perdrix A, Castanet M, Joly-Hélas G, Sibert L, Bironneau A, Way A, Macé B. The feasibility of fertility preservation in adolescents with Klinefelter syndrome. Hum Reprod 2013;28:1468–1479. - 218. Zollner TM, Veraart JC, Wolter M, Hesse S, Villemur B, Wenke A, Werner RJ, Boehncke WH, Jost SS, Scharrer I, Kaufmann R. Leg ulcers in Klinefelter's syndrome–further evidence for an involvement of plasminogen activator inhibitor-1. Br J Dermatol 1997;136:341–344. - 219. Zhang B, Lu BY, Yu B, Zheng FX, Zhou Q, Chen YP, Zhang XQ. Noninvasive prenatal screening for fetal common sex chromosome aneuploidies from maternal blood. J Int Med Res 2017;45:621–630. - 220. Schlegel PN. Testicular sperm extraction: micro-dissection improves sperm yield with minimal tissue excision. Hum Reprod 1999;14:131–135. This article is protected by copyright. All rights reserved - 221. Vena W, Pizzocaro A, Indirli R, Amer M, Maffezzoni F, Delbarba A, Leonardi L, Balzarini L, Ulivieri FM, Ferlin A, Mantovani G, Lania AG, Ferrante E, Mazziotti G. Prevalence and determinants of radiological vertebral fractures in patients with Klinefelter syndrome. Andrology. 2020 epub - 222. Close S,Talboy A,Fennoy I. Complexities of Care inKlinefelter Syndrome: An APRN Perspective. Pediatr Endocrinol Rev.2017;14(Suppl 2):462-471 - 223. Dotters-Katz SK, Humphrey WM, Senz KL, Lee VR, Shaffer BL, Caughey AB. The impact of prenatally diagnosed Klinefelter Syndrome on obstetric and neonatal outcomes. Eur J Obstet Gynecol Reprod Biol2016;203:173–176. - 224. Gies I, Oates R, De Schepper J, Tournaye H. Testicular biopsy and cryopreservation for fertility preservation of pre-pubertal boys with Klinefelter syndrome: a pro/con debate. Fertil Steril 2016;105:249-55. - 225. Gies I, Schepper JD, Saen DV, Anckaert E, Goossens E, Tournaye H. Failure of a combined clinical-and hormonal-based strategy to detect early spermatogenesis and retrieve spermatogonial stem cells in 47,XXY boys by single testicular biopsy. Hum Reprod 2012;27:998–1004. - 226. Giudice MG, Vermeulen M, Wyns C.Blood Testis Barrier and Somatic Cells Impairment in a Series of 35 Adult Klinefelter Syndrome Patients. Int J Mol Sci. 2019 Nov 14;20(22). - 227. Hachimi-Idrissi S, Desmyttere S, Goossens A, Desprechins B, Otten J. Retroperitoneal teratoma as first sign of Klinefelter's syndrome. Arch Dis Child 1995, 72: 163-4. 111. - 228. Hasle H, Jacobsen BB, Asschenfeldt P, Andersen K. Mediastinal germ tumour associated with Klinefelter syndrome. Eur J Pediatr 1992;151: 735–9. - 229. Hultborn R, Hanson C, Kopf I, Verbiene I, Warnhammar E, Weimarck A. Prevalence of Klinefelter's syndrome in male breast cancer patients. Anticancer Res 1997;17:4292–4297. - 230. Maqdasy S, Bogenmann L, Batisse-Lignier M, Roche B, Franck F, Desbiez F, Tauveron I. Leydig cell tumor in a patient with 49,XXXXY karyotype: a review of literature. Reprod Biol Endocrinol 2015; 13: 72,DOI 10.1186/s12958-015-0071-7. - 231. Morris JK, Alberman E, Scott C, Jacobs P. Is the prevalence of Klinefelter syndrome increasing? Eur J Hum Genet 2008;16:163–170. - 232. Nahata L, Yu RN, Paltiel HJ, Chow JS, Logvinenko T, Rosoklija I, Cohen LE. Sperm retrieval in adolescents and young adults with Klinefelter syndrome: a prospective, pilot study. J Pediatr 2016;170:260–265. - 233. Nielsen J, Pelsen B, Sorensen K. Follow-up of 30 Klinefelter males treated with testosterone. Clin Genet 1988;33:262–269. - 234. Sato K, Takeuchi H, Kubota T. Pathology of intracranial germ cell tumors. Prog Neurol Surg 2009, 23: 59-75. - 235. Soria JC, Durdux C, Chretien Y, Sibony M, Damotte D, Housset M. Malignant Leydig cell tumor of the testis associated with Klinefelter's syndrome. Anticancer Res 1999: 4491-4494. - 236. Stochholm K, Bojesen A, Jensen AS, Juul S, Gravholt CH. Criminality in men with Klinefelter's syndrome and XYY syndrome: A cohort study. BMJ Open 2012;2:e000650. - 237. Tartaglia N, Cordeiro L, Howell S, Wilson R, Janusz J. The spectrum of the behavioral phenotype in boys and adolescents 47,XXY (Klinefelter syndrome). Pediatr Endocrinol Rev2010;8(Suppl 1):151–159. - 238. Vloeberghs V, Verheyen G, Santos-Ribeiro S, Staessen C, Verpoest W, Gies I, Tournaye H. Is genetic fatherhood within reach for all azoospermic Klinefelter men? PLoS One 2018;13:e0200300. | Parameter to be tested and/or treated | Infancy and childhood | Puberty and adolescence | |--|--|--| | Cryptorchidism | Treated according to the current guidelines | - | | Physical examination including testis | Biennially or as deemed as appropriate | Annually or as deemed as appropriate | | and mammary gland evaluation | Testicular ultrasound if required | Testicular ultrasound in all patients | | Cognitive evaluation and or specialist | Monitor speech development, learning abilities | Monitor educational problems, social training and | | | psychosocial problems. | psychological problems | | consultation | Support, if necessary | Support, if necessary | | Growth, body proportion and weight | Evaluated according to SD or centiles: pay attention | Evaluated according to SD or centiles: pay attention | | | to body proportions and overweigh or obesity | to body proportions and overweigh or obesity | | Fertility issues | | | | Information | Inform parents | Inform patients and their parents if deemed | | | | adequate | | Semen collection and cryopreservation | - | Selected cases after careful information | | Testicular biopsy and cryopreservation | | Selected cases in azoospermia | This article is protected by copyright. All rights reserved | | In all patients | In all patients | |-------------------------------------|---|---| | Assessment of vitamin D and calcium | Support, if necessary | Support, if necessary | | | Bone mineral status in case of vitamin D deficiency | Bone mineral status in case of
vitamin D deficiency | | Assessment of LH and testosterone | Only in the presence of micro-penis | In all patients | | | | | | Testosterone therapy | Selected cases with micropenis | In the presence of hypogonadism | **Table 1.** Summary of the most important parameters to be tested and/or related to therapeutical approaches from childhood to adolescence in patients with KS Table 2. Summary of the most important parameters to be tested and/or related therapeutical approach in adult with KS | Parameter to be tested | Frequency | |--|--| | Physical examination including testes and mammary gland evaluation | At least annually Mammary gland ultrasound if required Testis ultrasound on individual basis Follow guidelines for gynecomastia | | Cognitive evaluation and or specialist consultation | Selective cases Support if necessary | | Metabolic profile | At least annually Adequate treatment if necessary | | Hormonal profile: testosterone and LH | At least annually Testosterone therapy only in the presence of hypogonadism (follow guidelines for hypogonadism) | | Vitamin D and calcium determination | At the first visit and then on an individual basis Support if required | | Fertility issues | | | Information | Inform if not already notified if deemed adequate | | | Semen collection and cryopreservation | In all patients desiring fertility | |---|--|---| | | Testicular biopsy and cryopreservation | If fertility desidered in azoospermia | | Ì | Thrombosis prophylaxis | Prior to long-term flights or exposure to other risks | | 1 | 12-lead ECG QTc time | At the first visit and then on individual basis | | | DXA analysis at the lumbar and femoral levels and fracture risk assessment | At the first visit and then on individual basis Treat if required (follow guidelines for osteoporosis) | Figure 1 Fig 2a Fig 2b a-dark spermatogonium a-pale spermatogonium pachytene spermatocyte Pre-meiotic spermatocyte elongated spermatids "ghost" Sertoli cell round spermatids